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Background 

The personnel of the Geomechanics Division, Structures Laboratory, U.S. • 
Army Engineer Waterways Experiment Station (WES) are responsible for 
research and development in the general field of soil and rock dynamics. Our 
primary interest is in the response of earth and earth-structure systems 
subjected to intense transient (blast-type) loadings. An analysis of these 
systems is typically conducted in three different phases. First, laboratory tests 0 
are conducted on the geologic materials of interest in order to develop a data 
base of composition and mechanical properties; then, based upon this data 
base, a set of recommended material properties is developed for the consti- 
tutive modelers. In the second phase, the modelers fit one or more consti- 
tutive models to the recommended material properties. Last, finite element 
(FE) or finite difference codes are used by the ground shock calculators to •       • 
analyze the responses of these systems. 

The Geomechanics Division is frequently asked to conduct mechanical 
property investigations. In performing these investigations, we have tested 
and characterized many types of materials. These materials generally fall into + 
the following groups: moist and fully saturated cohesionless soils, desert 
alluviums, natural and remolded clays, clay shales, soil and rock "matching" 
grouts, and a variety of competent rocks. As basing and attack scenarios of 
the Department of Defense become more elaborate, and as the analysis tech- 
niques of modelers and ground shock calculators become more refined, 
greater demands are placed on the engineer who is asked to perform and • 
analyze the laboratory mechanical property tests in order to provide recom- 
mended material properties. Modelers and calculators are now requesting 
total-stress mechanical p. ^K..V data at stress levels of several kilobars. 
Complicated stress- and strain-path tests are frequently included in their lists 
of desired material response tests. Greater emphasis in effective-stress 0 
material properties is now evident in the ground shock community. 

Due to the unconventional nature of many of the requested tests, the 
engineer performing and analyzing the tests is sometimes uncertain about 
existing laboratory equipment, i.e.. whether it restricts the types of tests that 
can be conducted. The engineer may question the measured laboratory • 
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responses; are they theoretically realistic? An engineer may have specific 
questions such as: (a) what effect will small amounts of air-filled porosity 
have on material properties, (b) what loading rates are appropriate for con- 
ducting truly drained tests or undrained tests with meaningful pore pressure 
measurements, and (c) how does one calculate effective stresses at kilobar 
stress levels for rock-like materials? In some situations, an engineer respon- 
sible for recommending material properties may only have low pressure (less 
than a kilobar) total-stress and effective-stress data from which to extrapolate 
multikilobar material responses. 

An engineer would have a tremendous advantage if a numerical tool were 
available with which to verify laboratory test results or to predict unavailable 
laboratory test data. The appropriate numerical tool should give an engineer 
the capability to calculate both total- and effective-stress material responses. 
This numerical tool would: 

*J 

1. calculate strains, total and effective stresses, and pore fluid pressures 
for fully- and partially-saturated porous media, 

2. calculate the time dependent flow of pore fluids in porous media, 
3. model nonlinear irreversible stress-strain behavior, including coupled 

shear-induced volume change, and 
4    simulate the effect of nonlinear pore fluid compressibility and the 

contribution of the compressibility of the grain solids for stresses up to 
several kilobars. 

The FE code JAM incorporates all of the above features. The code simu- 
lates quasi-static, axisymmetric, laboratory mechanical property tests, i.e., the 
laboratory tests are analyzed as boundary value problems. Features 1 aid 2 
were incorporated into the code using modified formulations of Biot's coupled 
theory as advanced by investigators such as Zienkiewicz (1985a) and Lewis 
and Schrefler (1987). An elastic-plastic strain-hardening cap model calculates 
the time-independent skeletal responses of the porous solids. This enables the 
code to model nonlinear irreversible stress-strain behavior and shear-induced 
volume changes.  In order to accurately model the total- and effective-stress 
responses of multikilobar laboratory tests, fluid and solid compressibilities 
were incorporated into the code.  Following the concept used by Chang and 
Duncan (1983), partially-saturated materials were simulated with a "homoge- 
nized" compressible pore fluid. 

•        • 

Approach 

To develop the FE code, four major tasks were completed. They were: 

1)   a cap model was incorporated into an existing two-dimensional finite 
element code PLAST and numerical experiment were conducted to 
verify its implementation; 
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2) a modified version of Biot's coupled theory was implemented into the 
code produced in step 1 above; 

3) a data base of drained and undrained mechanical properties was ob- 
tained for a limestone with a porosity of 13.5%; it included mechani- 
cal properties from tests conducted at stress levels of up to 6 kilobars 
and recommended properties; 

4) using the recommended properties from step 3, a cap model was fit to 
the drained properties; the undrained stress-strain and pore pressure 
responses of the material were calculated with the FE code and then 
compared to the undrained material responses. 

*) 

Purpose and Scope 

The purpose of this report is to document the features and algorithms 
implemented into the FE code JAM. Chapter 2 describes the FE model im- 
plemented into JAM and briefly documents the constitutive models available in 
the code. The essential features of the cap model are reviewed and the steps 
required to implement the cap model into the FE code JAM are summarized 
in Chapter 3. The equations of state for air, water, and grain solids are docu- 
mented in Chapter 4, and the equations for compressibility of an air-water 
mixture are developed. Chapter S describes features in the FE program not 
introduced in earlier chapters and presents solutions from several verification 
problems as proof that the program works correctly.  Numerical simulations 
of limestone behavior under drained and undrained boundary conditions are 
presented in Chapter 6. The final chapter summarizes the results of this 
research effort. 

•        • 

ChtpMt 1  introduction 



2    Finite Element Model 

Introduction 

This chapter describes the FE model implemented into JAM and briefly 
documents the constitutive models available in the code. The work of Biot 
and other investigators is described, followed by a discussion of the equations 
implemented by Lewis and Schrefier and modifications that must be made to 
those equations. In addition, the equations are derived for the residuals. 
Finally, the five constitutive models available in JAM for modelling skeletal 
behavior are described. 

Background 

In 1941, Biot published his three-dimensional theory of consolidation for 
static loading. In his theory, Biot coupled the solution of the equations of 
pore fluid diffusion with the equations of deformation for the porous solids. 
He was thus able to calculate time-dependent displacements, strains, pore fluid 
pressures, and effective stresses. Biot made the following assumptions in his 
formulation: (1) the material was isotropic, (2) the material was linear elastic, 
(3) small strains were applicable, (4) the pore water was incompressible, (5) 
the pore water could contain air bubbles, and (6) flow of the pore water obey- 
ed Darcy's Law.  In subsequent papers. Biot extended his theory to include 
anisotropic materials, viscoelastic materials, and dynamic processes (Biot 
1955; 1962). 

With the rapid development of digital computers and advances in numerical 
techniques such as the finite element method, many investigators expanded 
Biot's theory in attempts to model more realistic and more complex problems. 
Sandhu and Wilson (1969) were the first to use finite dement techniques with 
Biot's original formulation to solve initial boundary value problems   They 
applied variational principles to the field equations of fluid flow in a fully 
saturated porous elastic continuum, and then used the finite element method to 
numerically solve the resulting coupled equations. 

- '■   1 
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Ghaboussi and Wilson (1972, 1973) developed a variational formulation of 
Biot's dynamic field equations for saturated porous elastic solids. Their finite 
element formulation allowed for the compressibilities of both the fluid and 
solid phases. Their methods were applicable to dynamic soil-structure inter- ^ 
action and wave propagation problems in saturated geologic media. 

Zienkiewicz and his colleagues have written extensively about their use of 
modified versions of Biot's formulation to solve consolidation, liquefaction, 
and wave propagation problems in fluid saturated porous materials (Simon et 
al. 1986a and 1986b; Zienkiewicz 1985a; Zienkiewicz et al. 1980; 
Zienkiewicz and Shiomi 1984). They have incorporated several different non- 
linear constitutive models into their numerical codes. For example, Lewis et 
al. (1976), used a hyperbolic constitutive relationship to model the skeletal 
response of the solids. They incorporated fluid and solid compressibilities, 
creep, and void -atio dependent permeability into their code. Zienkiewicz and 
his colleagues have also demonstrated a capability to solve dynamic problems 
such as ground motions due to earthquakes.  For example, Zienkiewicz et al. 
(1982), modified the Critical State model to include a Coulomb-type failure 
surface and incorporated a "cumulative densification" feature into the consti- 
tutive model that allowed pore fluid pressures to increase with increasing 
numbers of load-unload cycles. They then demonstrated the utility of their 
approach when they used their code to approximate the earthquake induced 
displacements and pore pressures within the Lower San Fernando Dam. 

Other investigators have also expanded Biot's formulation with nonlinear 
constitutive models.  Oka et al. (1986) developed an elasto-viscoplastic consti- 
tutive model for clay and used Biot's theory to study the two-dimensional con- 
solidation response of sensitive and aged clay deposits. They demonstrated 
the capability of their code to simulate the consolidation response of clay 
deposits during the construction phase of embankments. Chang and Duncan 
(1983) used a modified Cam Clay constitutive model in their analyses of earth 
structures constructed of compacted, partially saturated clay soils. They also 
applied the concept of a "homogenized pore fluid" to Biot's formulation in 
order to model partially saturated clay soils. With this implementation, they 
were able to treat partially saturated soils as two-phase materials, i.e., solids 
and compressible pore fluid, instead of using a more theoretically rigorous 
approach involving three-phase materials. 

Lewis and Schrefler (1987) extended Biot's formulation to include the 
governing equations for single phase, multiphase, and saturated-unsarurated 
flow in a deforming porous solid. They discussed finite element procedures 
for both the space and time discretization aspects of consolidation problems. 
They also presented linear elastic and nonlinear constitutive relationships; the 
nonlinear models included the hyperbolic model and incremental elastic-plastic 
models such as the Critical State models. 

• 
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Finite Element Formulation 

Effective stresses and strains 

For a nonlinear material not susceptible to creep strains, a general stress- 
strain relation can be written as 

daij' ' Dijki\d*kl ~ d4if 2.1 

Dijkid*ki' 

where ai;' is the matrix of effective stresses, Dtjkl is the tangential stiffness 

matrix or constitutive matrix, dtkl is the matrix of total strains, dtskl is a 
matrix of strains due to the compression of the grains by the pore fluid and 

dekl' is a matrix of effective strains. The matrix dekt is evaluated as: 

where Kg is the bulk modulus of the grains, r is the pore fluid pressure, 6U is 
the Kronecker delta defined by 

«■■-I" *   if  is"J v     \ = 0  if  i #j 

and an engineering mechanics sign convention is used in which compression is 
negative. 

The purpose of the term dt kl is illustrated in the following example.  If a 
porous specimen surrounded by a pervious membrane was placed into a pres- 
sure vessel and a pressure of several hundred megapascals was applied, a 
volume decrease would be measured in the specimen due to the compression 
of the grains   However, since the total strain dtkl is equal to the volume 

strain due to grain compressibility, i.e.. dtkl - dtgkl, the effective strains and 
therefore the effective stresses within the specimen are zero. With the term 

dt K
kl included in the general stress-strain relation, effective stresses can 

simply be calculated as: 

do,/ - dotJ * *6); 2.3 

Under drained boundary conditions, the total and effective strains are equal, 
and the total and effective stresses are equal 
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In Equation 2.3, no factor need be applied to the pore pressure term to 
account for grain compressibility, which was a method proposed by Skempton 
(1960). After appropriate manipulation, the above equations will yield 
Skempton's equation 

Ap' * Ap 1 - AT 2.4 

where p is pressure, AT and K. are the bulk modulus of the skeleton and grain 
solids, respectively. 

Finite element equations 

The general equations developed from the spacial discretization of the 
equilibrium and continuity equations have been documented by a large number 
of investigators (Lewis and Schrefler 1987; Zienkiewicz 1985a).  Lewis and 
Schrefler developed the following equations: 

[K)u - [L)r - R • 0 2.5 

and 

\H)r~[S)f -[L)Tu - Q*0 2.6 

where [K\ is the tangent stiffness matrix of the solid phase. 

K -   |   BTDTBdQ 2.7 

[L] is the coupling matrix between the solid and fluid phases. 

-   f BTm, I -   I  B'mNdQ -   f BTD. 
'a 'Q 

3K. 
NdQ 2.8 

[W] is the permeability matrix of the porous skeleton. 

Tk H -   f (VW)1 1 %'Ndü 2.9 

(5) ts the compressibility matrix. 

S •   [ NTs NJQ 2.10 
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in which the scalar s is evaluated as 

. Ill ♦ ± - __L_ m^D 
Kt       Kf 

R is the external force vector, 

-   [ NTdbdQ *   [  NTdt 

Q is the vector of boundary flows, 

5 = i_Z + JL- I mlDTm 2.11 
Kg       Kf     OKg)

2 

R -   f NTdbdQ *   [  NTdtdT 2n 

r * Vooun 2.13 

8 

ß=    [Nr
9<xT +   [ (VN)T 1 VpghdQ 

and the superimposed dot indicates a time derivative. In the above equations, 
(it is the vector of displacement increments, * is the vector of pore pressure 
increments, D T is the elastic-plastic constitutive matrix, m is the matrix 
equivalent of the Kronecker delta, B is the strain-displacement matrix, N is the 
matrix of displacement shape functions, N is the matrix of pore pressure 
shape functions, b is a vector of body forces, if is a vector of surface trac- 
tions, k is the absolute permeability matrix of the material, p is the dynamic 
viscosity of the pore fluid, K. and K, are the bulk modulus of the grain 
solids and pore fluid, respectively, 4» is the porosity of the material, q is the 
vector of applied fluid flux, and p, g and h are fluid density, gravity, and 
elevation head, respectively. 

Lewis and Schrefler (1987) describe in detail the components that contrib- 
ute to the rate of fluid accumulation.  However, one of the terms in their 
formulation is misleading if not incorrect. The following discussion expands 
on their analysis and then shows why their formulation requires modification. 
For the material and conditions of interest, Lewis and Schrefler specify that 
four volumetric strain components must be evaluated; they are the volume 

strain of the porous matrix t ™, the volume strains of the grain solids € f and 

the pore fluid < /, and a component of solid volume strain < *' due to the 
applied effective stresses. To simplify the discussion of fluid accumulation, 
consider the following test conditions. A fully saturated porous material is 
contained in a sample chamber, which has frictionless sides, and is loaded by 
a frictionless piston with area A. A flow meter attached to the piston indicates 
the direction of fluid flow into (positive flow) or out of (negative flow) the 
sample. The top surface of the piston is loaded by a chamber pressure P, and 
a second fluid pressure P2 is applied through the flow meter to the pore fluid 
within the sample. The fluid pressures P| and P2 control the total and effec- 
tive stresses within the sample. Recall that for a porous material with a 
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dt\ Ml -n)d(s = (1-/.) Zp. 2.16 
Kl 

where rfP has been replaced by the pore fluid pressure dr. 

In the same manner, the volume change within the unit volume due to the 
compression of the pore fluid is written as: 

d({-   -nt. 2.17 

where K, is the bulk modulus of the pore fluid. 

Lewis and Schrefler also evaluate the component of volume strain due to 
the compression of the grains caused by the increase in effective stress. A 
similar analysis was developed by Bishop (1973).  Refer again to the test 
configuration and the example in which P, was increased and P2 held 
constant   For a statistically random distribution of pore space within the 
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volume of unity, the volume of the voids is n, and the volume of the solids is 
1-n. 

If Pj is increased and P2 held constant, the effective stress in the specimen ID 
will increase, the material will compress, and pore fluid will flow out of the • 
specimen.  Since the specimen is fully saturated with fluid, the rate of change 
in fluid accumulation is equal to the volumetric strain of the porous matrix * 
and may be written as: 

fC _ ^kk _ ^U s 2.14 » 
dt   ~    dt        dt    ij 

If Pj and ?i are increased at the same rate, the effective stress within the 
specimen will not change. However, both the grain solids and the pore fluid 
will compress due to the change in pore fluid pressure. For these conditions, * 
fluid will flow into the specimen.  Let us evaluate the solid and fluid compo- 
nents separately. The volui .*. strain in the solids due to an applied pressure is 
expressed as: 

dts - d-l - U* 2.15 . 
°      V,        Kg • 

where K is the bulk modulus of the grains and Vs is the volume of the sol- 
ids.  From this equation, we can express the volume change within the unit 
volume due to the compression of the grains as: 

•        • 

• 
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specimen, the area of solids (As) on any plane through the specimen will be 

A,-(1-nM 2.18 

where n is the porosity of the specimen as previously defined. If datj' is the 

average normal effective stress on any surface, then datj■,' I (1 - n) is the 
average normal stress in the solids. Using the concept implied by Equa- 
tion 2. IS, the pressure applied to the solids can be expressed as: 

dP • 
da: 

6t; =   ~d0kk' 
3(1-n) ",J3(1-n) 

which when substituted into Equation 2.16 gives: 

de. 

2.19 

dV dV d°kk' 2.20 
(1-«)V     3Kg(\-n) 

The component of volume strain due to the applied effective stresses for the 
unit volume is then: 

de ge _ dV da kk 

3*. 
2.21 

The components of the volume strain are now: 

de kk de m 

dt 

del      dei 2.22 
dt dt dt dt        dt 

and the expressions for each component when substituted gives: 

de total 
kk de 

matrix 
kk 1   da kk 

dt dt 3*,   dt 
1 n      n   + _ 

dr 
dt 

2.23 

The term in dispute is the component of volume strain due to the applied 
effective stresses. Grain compression due to changes in effective pressure is 
already incorporated into all skeletal constitutive models by default.  In an 
analysis of drained test data, the skeletal strains are not decoupled from the 
grain strains, and the sum of the two is always measured by strain gauges or 
deformeters   Therefore, both components are included when a constitutive 
model is fit to drained hydrostatic loading data. A similar argument can be 
made by examining Equation 2.23.  During a drained test, Equation 2.2? 
would reduce to the following 

*Uk 
dt 

^6 
dt     " 

1 do kk 
IK.    dt 

2.24 

10 
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Clearly, this is in error; the only strains included in the above expression 
should be the skeletal strains. Therefore, one should only include grain com- 
pression due to changing pore pressures in the final formulation. The neces- 
sary modifications were made to Equations 2.8 and 2.11, which are rewritten 
below 

-  | BTm NdQ 2.25 

and 

, lz± + ± 2.26 

Equations for residual forces 

Although numerous papers pertaining to the FE equations governing pore 
fluid flow in a deforming porous solid are available, none outline the equa- 
tions required to calculate the residual forces. In this section, these equations 
are developed for a nonlinear incremental finite element program that employs 
a modified Newton-Raphson solution scheme. 

The time integration of Equations 2.5 and 2.6 is performed using the fol- 
lowing approximation: 

k'      xdr-aAf'^x Ml -a)Atly 2.27 

for 0 £ a <, 1.  From Equation 2.27, the following are developed: 

'♦Ar       t. 
l*aM, X '    X 

At 
2.28 

and 

X * (1-«)   X ♦ *        X 2.29 
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Table 2.1 gives the most common difference schemes adopted by the selec- 
tion of a given value of a. Equation 2.5 may be written for a given time 

Table 2.1. 
Time Integration Parameters 

Value cr Difference Scham« Stability 

0 Forward or Euler Conditionally 

Vi Crank-Nicolson Unconditionally 

% Galerkin Unconditionally 

1 Backward Conditionally 

t+aAt as: 

r + aAfrKi f + aAfj%  _   l»ail|M t + aAt-   _   t + aAlp 2.30 

m 

Equations 2.28 and 2.29 are introduced into Equation 2.30 to produce the 
following 

t+&t [K] ""u -  'u 
Ar 

t+M [L] 
t+iu. 

M 2.31 

'^'R-'R 
A/ 

Multiplying by Ar and collecting terms, one obtains 

=  ""R-'R   . 

2.32 

In general. Equation 2.32 represents nonlinear behavior.  The relationship 
may be linearized with the following expressions: 

t*touU) m  /.A/MU  l) 4 6uU) 2.33 

'M^iD  =   l'Alfd-ll + 5T(i) 2.34 

where i represents the current iteration, and the initial conditions are 

<<*u(0) «   '„ and  "&J0) „   »T   This linearization can be used as the 
first step in a Newton-Raphson iteration (Bathe 1982)   If Equations 2.33 

12 
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and 2.34 are substituted into Equation 2.32 and the terms for iterations (i-i) 
and (0) are brought to the right hand side of the equation, then one obtains: 

'+A,[tf]««(,) - '+A'[I]«T(0 = ,+AtR - 'R 

-   '+A'[jf]{'+^tt('-
1) -   ' + A/M(0)| 2.35 

+  fA/j£jjr+A/T(i-l) _  z+A/^OJJ 

Recognizing that 

tß _   '♦A'rjfi r + ArM(0) _   '+A/r£i  t*Atv(0) 2.36 

Equation 2.35 may be written in terms of the incremental or accumulative 
stresses and pore pressures as 

2.37 

where  '♦*/?<'-» = ljr '^'^dVand 

/♦A/£.(|-l)   _    l + Alr£i(/-l)f*A»    (l-l) 

Equation 2.37 is one of the two equations required to solve for pore fluid flow 
in a deforming nonlinear porous solid. The second equation is developed 
from Equation 2.6 and is written at time t+aAt as: 

TU] t*a&IT   - f Cl f + orA/^.  _  .rJ t*a&ly =    t*a&tQ 2.38 

Equations 2.28 and 2.29 are introduced into Equation 2.38 to produce 

[H]{(\-a)'w *a '♦**} - [S] 
t*At        I T -     T 

\LV 

At 

11 Al I 

At 

2.39 

(l-a)'Q * a't&tQ 

m 

•   • 
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Collecting terms and multiplying by Ar one obtains: 

{-[5] + aAr[ff]} '♦*» - [Lf{ ,+A'«-'«} 

+ {[5] + (l-a)Af [*/]}'* = P 

where P = Af{(l -a) 'Q + a /+A,ß}.  If the following equations 

S = -[S] + aAt[H] 2Al 

and 
/7 = [5] *(l-a)Ar[Ä] =Ar[/7] -S 2 42 

are substituted into Equation 2.40 for simplification, then one obtains 

S ,+A/x - [L]T '**« = P-H'r - [L? 'u   . 243 

Equation 2.43 must now be formulated for general nonlinear behavior 
using the same linearization process applied to Equation 2.32, i.e., Equa- 
tions 2.33 and 2.34 must be substituted. This operation produces 

_   / + A/p       /»Ar^ f*AifT(0) _   /»A/r^ir »*Artt(0) _ .. 

Collecting the bu and 6«- terms on the left hand side of the equation, one gets 

'*^S6ir{i) -   '*A/[Llr^tt(', *   ,tAJp-   '♦Af£i*A/f.(Q) 
2.45 

_   r*Af£ fAf^i-l) 4   '**{£, )r{ »♦Ala(«'D -   '«A»,,«»} 

Equations 2.41 and 2.42 can be used to eliminate the terms H and S from the 
right hand side of Equation 2.45 to produce 

"*'S6irU) -   '*A,[L)T6uU) -   "*P 
2.46 

1*1 

2.40 (*) 

*J 

- A/ ''toff l*Mv(0)  _   fAi£<«-l)  +   t'&iyii 1) 

where  "^G(l  l) • < -  '^'|S](,,) ♦ aA/ "*||/]<'-'>} "^A*(I  1). 
»♦A/^o-n B f«Aij£ir((-i) ci/^jjd-D 

Ci/ilf(i-li  ,     /«A/yd!)   „   l<i/fl0| 

f«A/Aw<«I)  .    fA/^U-l)  .    I'il^lO) 

Chapter 2  Firwe «lament Modal 

• • 

• «. 



Ar] 

Equations 2.37 and 2.46 are written in matrix form for increment f+Ar as: 

K - L 

- LT    - S * aAtH 

«««> 

«*<''> 

R -Fu-n + CO-D 

• 

•SO 

2.47 
This is the system of equations that must be solved to calculate displacements 
and pore fluid pressures in a deforming porous solid. 

Constitutive Models 

Four of the five constitutive models available in the FE code JAM were 
deve oped by Owen and Hinton (1980). These models were implemented by 
Owen and Hinton in the FE code PLAST, which was the original FE code on 
which JAM was built. Each of the four models were implemented as elastic- 
plastic models with linear strain hardening, and each has a different yield 
criteria. The four models include the Tresca and von Mises criteria, which 
are suitable for metal plasticity, and the Coulomb and Drucker-Prager criteria, 
which are more suitable for the simulation of soil, rock, and concrete. 

The yield stresses in both the Tresca and von Mises criteria are indepen- 
dent of pressure, which makes these models unsuitable for simulating the pres- 
sure dependent material behavior exhibited by soil, rock and concrete.  In 
contrast, yield stresses in the Coulomb and Drucker-Prager criteria are pres- 
sure dependent.  For more information on these models, the reader should 
refer to Chapter 7 in Owen and Hinton (1980). 

An elastic-plastic strain-hardening cap model was implemented into JAM to 
calculate the time-independent skeletal response of the porous solids. The cap 
model enables the FE code to model nonlinear irreversible stress-strain behav- 
ior and shear-induced volume changes. Chapter 3 contains extensive docu- 
mentation on the cap model. 

Element Implemented into JAM 

A new element was implemented into JAM to calculate both the displace- 
ment and pore fluid pressures. JAM uses an eight-node isoparametric element 
with 16 displacement and four pore fluid degrees of freedom.  Similar ele- 
ments were used by Lewis and Schrefler (1987), Simon et at (1986a, !986b). 
Zienkiewicz (1985a), Zienkiewicz et at (1980). and Zienkiewicr and Shiomi 
(1984)   Four Gauss integration points are utilized in each element 
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Summary 

In this chapter, the work of Biot and other investigators was briefly de- 
scribed, followed by a discussion of the modified Biot equations implemented 
by Lewis and Schrefler and modifications that were made to those equations. 
In addition, equations were derived for the residual forces. Finally, the five 
constitutive models available in JAM and the element implemented into JAM 
were described. 

5/ 
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3    The Cap Model and Its 
Implementation 

Introduction 

The "cap model falls within the framework of the classical incremental 
theory of work-han'ening plasticity for materials that have time- and temper- 
ature-independent properties" (Chen and Baladi 198S). When modelling geo- 
logic maten?!i subjected to stresses ranging from one to several hundred 
megapascals, the cap model has several desirable features. Of primary 
importance is its ability to model volumetric hysteresis through the use of a 
strain-hardening yield surface or cap. 

In this chapter, the essential features of the cap model are reviewed, and 
the steps required to implement the cap model into the finite element code 
JAM are summarized.  After a brief evaluation of the loading function and 
flow rule, the incremental elastic-plastic stress-strain relations are outlined. In 
addition, the cap model implemented into JAM is described, and the equations 
are developed for the elastic-plastic constitutive matrix and the plastic 
hardening modulus. Finally, the numerical implementation of the cap model 
itself is described. The reader should note that an engineering mechanics sign 
convention is used in which compression is negative. 

Background 

The cap model has been used by researchers in the ground shock commu- 
nity for approximately 20 years to simulate the responses of a wide variety of 
geologic materials.  It is "predicated on the fact that the volumetric hysteresis 
exhibited by many geologic materials can also be described by a plasticity 
model, if the model is based on a hardening yield surface which includes con- 
ditions of hydrostatic stress* (Sandler et al. 1976)   The model was first 
described in the open literature by DiMaggio and Sandier (1971). The 
FORTRAN source code for the model was published by Sandier and Rubin 
(1979) 
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As stated above, the cap model has several desirable features. Of primary 
importance is its ability to model volumetric hysteresis through the use of a 
strain-hardening yield surface or cap. The cap model may also be formulated 
with a nonlinear failure surface, with linear or nonlinear elastic moduli, or as *} 
a function of the third stress invariant. With the appropriate selection of 9 

material parameters, it can be used as a linear elastic or linear elastic-perfectly 
plastic material model. Sandier and Rubin (1979) demonstrated notable fore- * 
sight with their use of function statements within the model, which allow sub- 
stantial changes to be made to the cap model's potential functions with little 
programming effort. 

Modifications and expansions of the original model were made by several 
researchers.  Effective-stress versions of the cap model are reported in 
Baladi (1979), Baladi and Akers (1981), and Baladi and Rohani (1977, 1978, 
1979).  A transverse-isotropic cap was developed by Baladi (1978) and an 
elastic-viscoplastic cap model by Baladi and Rohani (1982). Rubin and * 
Sandier (1977) developed a high-pressure cap model for ground shock calcu- 
lations due to subsurface explosions. Baladi (1986) developed a "complex" 
strain-dependent cap model, which required 39 model parameters, for ground 
shock calculations of a dry cemented sand. In addition, several versions of 
the cap model are described in the text by Chen and Baladi (1985). 

In formulating the cap model, DiMaggio and Sandier (1971) complied with 
the constraints imposed by Drucker's stability postulate.  Drucker's stability 
postulate is sufficient, although not necessary, to satisfy all thermodynamic 
and continuity requirements for continuum models (Sandler et al. 1976). 
Satisfying Drucker's stability postulate insures uniqueness, continuity, and •        # 
stability of a solution and provides a mathematical problem that is properly 
posed.  Rubin and Sandier (1977) state that "...the numerical solution to a 
properly posed problem can proceed without the fear that the results will be 
strongly dependent on errors of approximation of initial and boundary condi- 
tions, round off error, etc."  Drucker (1951) defines a work-hardening mate- 
rial as one that remains in equilibrium under an added set of stresses applied * 
by an external agency.  It also means that "(a) positive work is done by the 
externr.1 agency during the application of the added set of stresses and (b) the 
net work performed by the external agency ever the cycle of application and 
removal is positive if plastic deformation has occurred in the cycle" 
(Drucker 1951).  Drucker (1950) states these two conditions in a mathematical • 
format as 

daudttJ>0   and    do tJdtpt] J> 0 

The first statement constrains a model such that strain-softening may not 
occur   The second statement implies (a) the loading function or yield surface 
must be convex and (b) the plastic strain increment vector must be normal to 
the yield surface, which means that an associated flow rule must be used. 
Ihese are the constraints imposed by Drucker's stability postulate 
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Loading Functions and Flow Rule 

Drucker's criteria for stability permits considerable flexibility in the func- 
tional forms of the loading function /. Since Drucker's stability postulate 
requires the yield surface and plastic potential surface to coincide, the loading 
function / implicitly represents both the yield and potential surfaces. For a 
perfectly plastic material, a general form of the loading function may be writ- 
ten as 

/(*«?) -0 3.1 

and as 

f(ov,K)>0 3.2 

for a strain- or work-hardening material, where K is a hardening parameter 
that acts as an "..internal state variable that measures hardening as a function 
of the history of plastic volumetric strain" (Sandier and Rubin 1979).  For 
isotropic materials, the loading function may be expressed in terms of stress 
invariants, e.g., 

/(/,./^".«)-0 33 

where J{ = akk = the trace of the stress tensor and 

J2p = ttSySij = the second invariant of the deviatoric stress tensor. 
This is the form of the loading function used in most versions of the cap 
model. The loading function is assumed to be isotropic and is comprised of 
two surfaces, an ultimate failure envelope and a strain-hardening surface or 
cap.  The failure envelope, which is fixed in space and symmetric about the 
hydrostatic axis, limits the maximum shear stresses in the material and is ex- 
pressed as 

The cap, which moves as plastic deformations occur, is represented as 

The hardening parameter * is generally taken to be a function of the plastic 
volume strain (Chen and Baladi 1985) 
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n    (fP    \ 3.6 

Equation 3.6 allows the cap to expand and contract. By allowing the cap to 
contract, one can limit the amount of dilation that a material may develop 
when its stress path moves along the failure envelope h. This form of the 
hardening parameter is typically used for soil-like materials that do not exhibit 
significant dilation during failure. For rock-like materials, the hardening 
parameter may be written as 

In this form, the cap is only permitted to expand, thus allowing a material to 
dilate while its stress path moves along the failure envelope, i.e., when 
h « 0. Both Equations 3.6 and 3.7 produce hysteresis during an imposed 
hydrostatic load-unload cycle (Baladi and Akers 1981). 

The plastic loading criteria for the loading function / are given by 

d°ij 

0  loading 3 g 
0  neutral loading 
0  unloading 

(Baladi and Akers 1981). These criteria imply that during loading from a 
point on a given yield surface a stress increment tensor do^ (when viewed as 
a vector) will point outward (Rohani 1977). Plastic strains will only occur 
under this condition. During unloading, the stress vector points inward, and 
the material will behave elastically. Neutral loading occurs when the stress 
vector is tangent to the yield surface. During neutral loading, no plastic 
strains are produced in the case of a work-hardening material (Rohani 1977). 
This is referred to as the "continuity condition', and its satisfaction leads to 
the coincidence of elastic and plastic constitutive equations (Chen and 
Baladi 1985) 

Drucker (1951) has shown that the plastic strain increment tensor for a 
work-hardening material may be written as 

*?. 

a/     if  f » n »ivi   d/ dX -£L    if / - 0 and 1L. do.. > 0 
*°v *a,j     J 3.9 

0    if / < 0. or / - 0 and M- datJ s 0 
v 

20 

which is identical to the expression used for elastic-perfectly plastic materials 
The term d X is a positive factor of proportionality that is nonzero only when 
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plastic deformations occur (Baladi and Akers 1981). For the cap model, the 
loading function / may take the form of either Equation 3.4 or 3.5. 

Derivation of Incremental Elastic-Plastic Stress- 
Strain Relations 

The basic premise in the formulation of the cap model and all elastic-plas- 
tic constitutive models is that certain materials are capable of undergoing 
small plastic (permanent) strains as well as small elastic (recoverable) strains 
during each loading increment (Baladi and Akers 1981). This may be ex- 
pressed mathematically as 

dt    . dt' * dt? 31° 

where dt,. = components of the total strain increment tensor, 

dt*t. = components of the elastic strain increment tensor, and 

dt1-: = components of the plastic strain increment tensor. 

This equation simple states that the total strain increment is equal to the sum 
of the elastic and plastic strain increments. In its most general form, the 
elastic strain increment tensor may be expressed as 

where   Cljkl(amn) « the material response function, which may be a 
function of stress.  For isotropic materials, the elastic strain increment tensor 
may be expressed as 

.     dJt ds„ i ,-» 
dt    - _   6 ■  ♦ —1 3 12 

»      9 A   1      2G 

where  s    - a    - (/,/3)6    ■ the deviatoric stress tensor, 

6tJ « the Kronecker delta, and 
A* and C are the elastic bulk and shear moduli, respectively. 

The elastic bulk and shear moduli may be constants or functions of stress or 
strain invariants, e.g.. 

G * 0{Jx,JlDJlD) 

where  Jyt> » r/»sIJsjkskl ■ the third invariant of the deviatoric stress 
tensor. 

21 
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Chen and Baladi (1985) discuss the thermodynamic restrictions to the pos- 
sible forms of the above equations. Permissible functional forms of K and G 
must not generate energy or hysteresis and must maintain the path-independent 
behavior of elastic materials. Thus, the bulk and shear moduli should be 
limited to the following forms (Chen and Baladi 198S) 

* = *(■/,,4> 

G«G(72D,e{) 
3.14 

Inclusion of the plastic strain tensor into the functional forms of K and G is 
permitted since plastic strains are constant during periods of elastic deforma- 
tion. Under these restrictions, the hydrostatic and deviatoric components of 
the elastic strain increment tensor (Equation 3.12) may be written as 

df'kk 
dJ< 

3*</,,«J) 
3.15 

and 

*** 

ds< 

20(i2i,.«{) 
3.16 

Combining Equations 3.9 and 3.12. the total strain increment tensor can be 
written as 

A, 
dJx 

2G 
d\ JL 3.17 

The plastic strain increment tensor (Equation 3.9) may also be expressed in 
terms of the hydrostatic and deviatoric components of strain. Applying the 
chain rule of differentiation to the right-hand side of Equation 3.9 results in 

3.18 
< 

> d\ a/ dJi 
ay, a% 

a/   d^2o 

which simplifies to 

dtp - </x 
a/, " 

»       »f   .  1 ,—   —_. ,, 
2 viJ2£> ar2D 

3 19 

22 

Multiplying both sides of Equation 3.19 by bt) gives an expression for the 
plastic volumetric strain 
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,p - 1J\ df depkk = 3d\^L 3.20 
** dJx 

By definition, the deviatoric component of the plastic strain increment tensor 
is written as 

rfeJ-Aj -%*{,*«,. 321 

Substitution of Equations 3.19 and 3.20 into Equation 3.21 gives 

*5--^r< 3.22 

The proportionality factor dX must be determined prior to evaluating any of 
the above plastic strains. Baladi and Akers(1981), Chen and Baladi(198S), 
and Rohani(1977) outline the methods required to evaluate the proportionality 
factor. Those methods are included here for completeness. 

Using Equations 3.4, 3.5, and 3.6 or 3.7, the total derivative of the 
loading function / may be expressed as 

df *  -LdJx ♦      ■^—%=sijdsij ♦ V -^-dtpmm - 0   3.23 
°*\ -> ft        a fi J     J      OK  a,P 2SJ2D    °yJlD °lkk 

This expression is known as the "consistent condition" for strain-hardening 
materials (Chen and Baladi 1985). Using Equations 3.15. 3.16. and 3.20. 
Equation 3.23 may be manipulated to give 

,„,<   df       Gde'j      df ...   df  df   d«       n3.24 

1       PlD    d\lJ2D ' d(kk 

Substitution of Equation 3.10 into Equation 3.24 produces 

«!.)ü «-£-<*.. -dep.)-±L=s 
V2D 3.25 

3K(dtkk - dt\k)ZL * —Z—{deu - de')—Z 
1       Jim OM. 

'J 

- I^X bf  df   d" 
dt"kk 

Cnaptv 3 ttm Cap Mod«! «nd Kt tmptemwttMion 
23 

t ByaaaB|iBi|i|fiH|fija{| 



By substituting Equations 3.20 and 3.22 into Equation 3.25, one obtains 

3KJHdtkk + -° *L-sudeu 

Vy2£>   d v-7: 2D 
3.26 

d\ 9K 
dJx 

2 

♦ G f    3/     1 
dp2D 

^2 
- 3Ü£iZ_£i 

3ii d* A.P 1 OK 3e ** 

Solving for the proportionality factor d\ yields 

d\ * 

3KlLdtkk ♦ _£_ H—s  de —— * ijuc ij 

2D 

9K 
dJx 

3.27 

♦ G *f 
^2 

b{l 2D 

? df df   dK 

dJl d* dtp 
kk 

By using Equations 3.17, 3.19, and 3.27, the total strain increment tensor 
may be written as 

dJ, dS:: 
dt.. «  15    ♦  '1 

u     9K   >J      2G 

3K^Ld(kk ♦ 9f 

p2D    d P\ 
Vv 

ID 

2 piD   * \r; 

? df df   8K 

dJ,  du Atp 1        °ekk 

3.28 
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The stress increment tensor may be written as 

doiJ'KdUktiJ*2Gdeu 

9K 

3*Ä<* kk 
Bf 

piD   b vy: ID 

sUdeU 

♦ G 9f 

bfl ID 

3 df  Bf   OK 

1        dtkk 

3.29 

irVi.   +     G        *f     ...' 
1 v^o   ^V^D 

Equations 3.28 and 3.29 are the general constitutive equations for an elas- 
tic work-hardening plastic isotropic material (Chen and Baladi 1985). To use 
these equations, one must first define the loading function /, the functional 
forms of the elastic moduli K and G, and the hardening parameter K for the 
material of interest. 

Elastic-Plastic Constitutive Matrix 

In the following section, the equations for the elastic-plastic constitutive 
matrix are formulated. The equations are written in matrix format to render a 
more compact form of the equations. The development of the elastic-plastic 
constitutive matrix follows the derivation of Owen and Hmton (1980). 

The loading or yield function / for a general work- or strain-hardening 
elastic-plastic model (Equation 3.2) may be rewritten as: 

/(*.«) - F(0) - *(«) -0 3.30 

where (in matrix format) » is the vector of normal and shear stresses and * is 
the hardening parameter that controls the expansion of the yield surface. 
Recall that in the cap model, the cap itself is the only strain-hardening yield 
surface; the failure envelope is not a hardening surface.  Equation 3.30 may 
be differentiated to give: 

df >ld..dJ. d« - 0 3.31 

or in another form: 
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a1 do - Ad\ = 0 3.32 

26 

where 

aT = *L - -1L 3.33 
3a      Boy 

and 

A--'*Ld* 3.34 
flX    OK 

Owen and Hinton refer to the vector a as the/tow vector. The sealer 4 will 
be identified as the plastic hardening modulus. 

The total strain increment tensor (Equation 3.10) may be written in matrix 
format as 

dt *dt' + dS 3 35 

By substituting for both the elastic and plastic strain increments, i.e., using 
the matrix equivalents of Equations 3.9 and 3.11, the following expression is 
obtained: 

dt - D'ldo ♦ d\*L 3.36 
09 

where D is the matrix of elastic material constants and the inverse of the 
material response function 

After multiplying Equation 3.36 by aTD one obtains: 

aTDdt - a7 do ♦ aTDad\ 337 

which may be refined further by eliminating aT do with the use of Equa- 
tion 3.32 to produce: 

aTDdt *\A * aTDa }d\ 3 38 

This leads to an expression for the sealer term dk: 

d\ -      *TDdt 3.39 
\A * aTDa] 

This term gives the magnitude of the plastic strain increment vector and is the 
matrix form of Equation 3.27.  Note that in the text by Owen and 
Hinton (1980), this expression was printed incorrectly. 
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Having defined an expression for dk, it may be substituted into Equa- 
tion 3.36 to give: 

D'ldo = 1 - 
dT

Da 

A + dDa 

dt 
3.40 

where dD - a' D. 

Multiplying both sides of Equation 3.40 by D gives: 

do D 
Dad', 

A + dDa 

dt 
3.41 

which is an expression for the elastic-plastic incremental stress-strain relation. 

If we substitute dD = Da, then the elastic-plastic constitutive matrix may be 

expressed as: 

Dtp *D*D 

A ♦ dna 

3.42 

Plastic Hardening Modulus 

The plastic hardening modulus A must now be evaluated for a strain-hard- 
ening formulation such as the cap model. If the hardening parameter K is a 
function of the plastic strains, i.e.. 

« ' gUp) 3.43 

then Equation 3.43 may be differentiated to give: 

du » —dtp 344 
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Substituting Equation 3.44 into Equation 3.34, substituting for tp, and rear- 
ranging produces: 

A - - V Jl *£ 3.45 
OK d(PBo 

The plastic hardening modulus A will be dependent upon the functional form 
of the loading or yield function / and the hardening function used in the cap 
model. 

Cap Model Implemented into JAM 

The following section describes the version of the cap model implemented 
into the finite element code JAM. The functional forms of the equations are 
outlined, and the cap model is described in more detail. 

Two elastic response functions govern the behavior of the model in the 
elastic regime. The elastic bulk modulus is defined by the following equation 

K(Jltt"kk) P \ ,      K' 
1 -AT, 

1 - K.cxpiK^) 3.46 

where  K( = the initial elastic bulk modulus and 

tf i and K2 are material constants. 
The elastic bulk modulus prescribes the unloading moduli in pressure-volume 
space. The three material constants may be determined from the unloading 
data obtained during hydrostatic loading tests. The elastic shear modulus is 
defined by the following equation 

G(J2D.tpkk) 
G 

1 
P 1 -C,ap(C2«;4) 3.47 

where  Gt - the initial elastic shear modulus and 

C, and G2 are material constants. 
The elastic shear modulus prescribes the unloading moduli in principal stress 
difference-principal strain difference space. The three material constants may 
be determined from the unloading shear data of triaxial compression tests. 
The constants for the elastic bulk and shear moduli may also be determined 
from uniaxial strain compression tests, i.e., from the unloading slopes of the 
stress path (* 2GIK) and stress-strain curves ( - K * 4/3 G). 

In the current model, the failure envelope portion of the loading function / 
is defined by a modified Drucker-Prager failure surface (see Figure 3.1) of the 
form 
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3.1. Cap model yield surfaces 

A(i, ,/^T) • /^" - [i4 - Ccxp(Byj)]    if 7, >L(<) 
3.48 

where X, B and C are material constants. These constants may be determined 
from the locus of triaxial compression failure data plotted in the appropriate 
stress space.  The strain-hardening yield surface or cap is described by the 
following 

HUi.ftn.*)-^ 2D 
3.49 

- ~{[X(x) - L(K)}2 - [7, - LU)]2}05    if J, <L(K) 

where X{ *) and H «) define the values of 7, at the intersection of the cap 

with the Jj axis and at the center of the cap. respectively (see Figure 3.1); 
* is the hardening parameter, which is equal to the plastic volumetric strain, 
i.e.. 
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Equations 3.48 and 3.49 also indicate the value of Jx determines which of the 

two yield surfaces should be used.  R is the ratio of the major to minor axes 
of the elliptical cap and has the following functional form 

R[L(K)) =/?, +R, 1 -cxp(R2{L(K) ~L0}) 
3.51 

where Rt■., Rlt R2 and L0 are material constants; L0 defines the initial location 
of the cap. 

Chen and Baladi (1985) explain that the functional form of the cap was 
chosen such that the tangent of its intersection with the failure envelope is 
horizontal. This condition is guaranteed by the following relationship between 
XU) and LU) 

X(K) * L(K) - Rh(l(K), fin) 3.52 

where 

U*) { 
/(«) if /(«) < 0 

0 if /(*) «s 0 
3.53 

The hardening function for tkh model is defined by 

3.54 

which may be rewritten in the following form 

X(K) In Ji ♦ 1 
W 

3.55 

where £>. W and X0 are material constants.  W establishes the maximum 

plastic volumetric strain the material can develop; X0. like LQ, defines the 
initial location of the cap. 

As described previously, Drucker's stability postulate places limits on the 
functional forms of the equations in the cap model   Sandier and Rubin (1979) 
specify some of those limitations, (a) Q( J,) must decrease monotoiücally 

with increasing values of /3; (b) to avoid work-softening, the functions 
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X( K) and L( K ) must be continuous and monotonically increasing functions 
and 

ifäO   and   *Z<0 
ay, a« 

(c) the cap must extend from the J{ axis to a point on or below the failure 
envelope h, i.e., 

F[X(K),K) - 0 356 

and 

F[L(K),K] *Q[L(K)) 3.57 

(d) within the yield surfaces defined by 

fi^~ <Q(JO    for/, >L(K) 3.58 

and 

//HT <F(■/,.«)    forL(«)^y,sX(/c) 3.59 

the material response must be isotropic elastic. Sandier and Rubin (1979) 
explain that if the inequality in Equation 3.57 is true, then a gap exists be- 
tween the cap H and the failure envelope A and a von Mises type failure sur- 
face is used as a transition between the two yield surfaces (Figure 3.1). The 
yield surface for /, al( K ) is thus defined by the following expression 

fin   -min{F(KO.«l . QW) 3.60 

In the evaluation of plastic hardening modulus A. one need only be con- 
cerned with the functional form of the cap since it is the only hardening sur- 
face in the model. In order to evaluate A, each of the three terms in Equation 
3.45 must be evaluated.  Recalling Equation 3.50, the first term may be ex- 
panded as 

dW      d//aX      dH dX 
dXdi TXz.r dt tk 

3.61 
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Each of these terms is evaluated as 

dX 

ami 

Kk     D[(pkk * W 

dH 

3.62 

2(L-X) 3-63 

dX 

Combining the terms gives 

dH .    2(1 -X) 
d"      DlSkk + W 

The second term in the expression for A is evaluated as 

-^ ■»« 

since « ■ e£t. The fmal term in A can be expanded as 

HL-OLt +   til    di 
d0"      W>   "     2{J^dfl 

3.64 

3.65 

dH      dH6j +      *»_    9H_ 3 M 

2D 

Recalling that JI;6(; - 0 and substituting Equations 3.64-3.66 into Equa- 
tion 3.45, one gets 

Am    6(X- L)   dH A - -_ 3.67 
D{tpkk ♦ W)dJ\ 

as an expression for A.  Simplifying this further by evaluating 

|£ - 2Ul - L) 3.68 
dJi 

and substituting into Equation 3.67, one obtains the final expression for the 
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plastic hardening modulus 

121 
A - — 

DU»kk ♦ W) 

12(X - L)(7, -L) 
/I . _J Hi 1 3.69 

Numerical Implementation of the Cap Model 

Introduction 

The numerical algorithm for the cap model was published by Sandier and 
Rubin in an attempt "to facilitate the general use of the cap model in dynamic 
computations, as well as in model fitting'' (Sandier and Rubin 1979). The cap 
model algorithm was designed for use in either finite element or finite differ- 
ence codes and is applicable to both static and dynamic problems (Chen and 
Baladi 198S). Of notable foresight on the part of the designers was their use 
of function statements within the model, which allow substantial changes to be 
made to the cap model's potential functions with little programming effort. 
This feature has allowed investigators to simulate a wide variety of natural and 
man-made materials with high degrees of fidelity between model and material 
response. Despite the many published variations of the cap model, the 
original cap model algorithm developed by Sandier and Rubin still forms the 
foundation of most current cap model algorithms. 

The cap model algorithm is essentially an implementation of Equa- 
tion 3.29. To march the calculation through time, the user must input the 

stresses 'atJ and the location of the cap at time t, which is explicitly defined 

by the term /('* ) and implicitly defined by the hardening parameter '«, and 
the strain increments from the solution of the field equations for the current 

time step '*A'<ft,;. The cap model returns the new stresses "^'o^andthe 

updated cap location and hardening parameter /('**'* ) and '**'« at time 
t* At. A given strain increment may invoke four different types of stress 
paths that coincide with four different algorithms within the cap model itself: 

(a) an elastic algorithm. 
(b) a failure envelope algorithm, 
(c) a hardening cap algorithm, or 
(d) a tension cutoff algorithm. 

In the following text, a description of the four numerical algorithms is provid- 
ed   The descriptions are basri upon previous descriptions by Baladi and 
Akers (1981), Chen and B»'*di (1985), Sandier and Rubin (1979), and Meier 
(1989). To simplify the p    station, a description of the cap models re- 
sponse in the tensile regime will be deferred to the later pan of this section. 
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Elastic algorithm 

To start the numerical procedure, it is assumed that the given strain incre- 
ments produce an entirely elastic stress path. A set of elastic trial stresses are 
calculated from 

and 

%=  'Sij + 20'^deij 3.71 

The elastic trial stresses are tested with respect to the tension cutoff, the fail- 
ure envelope, and then the cap. If these surfaces are not violated by the trial 
stresses, the actual stress path is an elastic path, and the new stresses are the 

'♦Aff   _£,   «^J   MA».    _£. elastic trial stresses, i.e.,  ' aiJy -CJ{ and        5» *   s «;• 

Failure anvelope algorithm 

If the following conditions exist when the elastic trial stresses are tested 
with respect to the failure envelope, 

h{EJx,(%^) -/T/~- Q(EJX) ± 0 

then the elastic trial stresses have violated the failure envelope, and the given 
strain increment must be a combination of elastic and plastic strains. The trial 
stresses must be corrected such that (a) the final stress state falls on the failure 
surface and satisfies the following relation 

»('•AVV "*>JW  ) . 0 3 n 

and (b) the resulting elastic and plastic strain increments add up to the given 

strain increments  ' * A'rf« ^. 

The mathematical statement that requires the final stresses to lie on the 
fixed failure surface is given as 

dh - 4^-d"h * ° 373 
BotJ      > 

Assuming small strain increments. Equation 3.73 can be numerically approxi- 
mated by the following expression 
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dh (%D~ ~ {'^'hD   ~ Q( %) * ß( "A,'i> 
3.74 

which reduces to 

dh *{%D   -Q( */,) 
3.75 

since the final stress point must lie on the failure surface, i.e., 

/ 
t + Ati 

'2D 
t + At ß('♦<"/,)-<> 

3.76 

Equation 3.75 may be substituted into Equation 3.73 and expanded in the 
following manner 

(%D   -Q(EJO'-^-äaij 

>J 

dh *J\ 
dJ\ 9aij 

dh dp2D 

dp. 2D 

11 
dJ, 

dJx 

da. 

dh     E 

dOjj    3.77 

2SJ2D   d P: 

sijdsiJ 
2D 

where dJl * EJ\ - '7,   and  ds^ * Esij -'sy. From Equations 3.70 and 

3.71, we know that dJx « 3K"*'dekk and dsi} - 2G'*^deijt and these 
expressions may be substituted into Equation 3.77 to give 

f '2D -Q(EJx)-lK,tl"d(kk*!L 
OJ \ 

plD    d VJ2D 

dh    £s„ ""de* 

3.78 
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If we substitute Equation 3.78 into the numerator of Equation 3.27 and recog- 

•    .1, ♦ u   f    9h dQ mzethat A=/, —- - --f, 

3y72D 
ure envelope, an expression for d\ may be written as 

Bh    = 1, and — - 0 for the fixed fail- 
die 

dX m /%T -Q(EJQ 

9K dQ 
3.79 

♦ G 

Substituting the above expression into Equation 3.20, the final expression for 
the plastic strain increment is obtained 

*i* -3 

■ " 

i%D -Q(EJO 

9K 

2 

♦ G 

dQ 
3.80 

t + At An expression for     a'J{ may be developed in the following manner 

t*Ali V 
'y, ♦ 3K'**'dtkk - 3Ar</«Jt 

£J, - 3Kdt
p

kk 

3.81 

where d«J4 is defined by Equation 3.80. A "tentative" value of '*A'y, may 
be calculated from Equation 3.81; this value is tentative because it must be 
tested against the current position of the cap, which is defined by the value of 

L('K). 

If '*A'Jl < L('K), which indicates the stress point has violated the cap, 
then comer coding is required, i.e.. the cap must intersect the failure envelope 

forming a comer, and the value of '*4,i, must be adjusted. Adhering to the 
imposed conditions of normality, a stress state lying on the failure envelope 
produces dilatant plastic volumetric strains. Since cap expansion can only 
result from compressive plastic volumetric strains, the cap is stationary, and 
the new stress state can not move beyond the intersection of the cap and the 

failure envelope. Thus, the final stress state is "A'7, * £('*). and the up- 

dated hardening parameter is '*A'* ■  '*. 
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If '+A'/j > L ( 'K ), then the final stresses will depend upon the form of 
the hardening function. Equation 3.7 is the simplest form of the hardening 
function to use because it only permits plastic volumetric compaction, i.e., the 
cap is only allowed to expand. As in the above case, a stress state lying on 
the failure envelope produces dilatant plastic volumetric strains. Since the 
hardening function defined by Equation 3.7 prescribes no cap movement due 
to dilatant volumetric strains, the cap is stationary. Thus, the final stress state 

is  t*A'Jl, i.e., no adjustment is required, and the updated hardening parame- 

ter is '+A/„ -  ' K . If the hardening function takes the form of Equation 3.6, 
which allows the cap to expand and contract, the cap is adjusted (in this case 
contracted) to a position prescribed by 

t*&t, 
I -  '/ ♦ 

dl 

dt kk 

dt kk 3.82 

'/ 

and a tentative value of ' * A'K is obtained. The new position of the cap must 
t*At be compared to the value of   *a\7,. If the cap has contracted such that 

r*At Jx < L('*A,K) *  ,+A'/,both "a'«and  'tA'J{ must be adjusted 

suchthat '*A'Jl = L('*A'K) 

with the following relation 

l ♦£/ /. This is accomplished by starting 

% -3Kdtpkk 
t*Ali L( I* At 

K) -   '/ ♦ 
3/ dt p  3.83 

kk 

eliminating dtpkk, which is the third unknown, by substituting the following 

Kk 
'i 

JL 
dt"kk 

3K 
3.84 

'/ 

from which one can show that 
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,+A'y, = EJX -3K 
*J ~ '< 

dl + 3K 

'1 

EJ dl ♦ 3* - 3K(EJX -   '/) 

dl 

d*p
kk 'i 

♦ 3K 

3.85 

which in turn simplifies to 

,+A'/ »/('*A,0 -  '+AV, 

a/ £y, * 3K 'i 

di 

de"kk 

+ 3K 

3.86 

t*At, Having calculated the final value of '*a'Jl, we must calculate the new com- 

t*Atr      TV. -™««J«« for   '♦*', portents of the deviatoric stress tensor        stJ. The expressions 
are developed below. 

'j 

Recognizing the path independence of linear elastic constitutive equations, 
we can write 

'•%- V2Grf<J 3.87 

Substituting Equation 3.71 into Equation 3.87 and performing a simple manip- 
ulation one obtains 

l* Al, !s-"  *■$    - 2Gde' 3.88 

Recalling Equation 3.22 and recognizing that „„,,„£. ,.. - 1, we can write 

de' - 
d\ 

ij p== * ij 3.89 
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which can be substituted into Equation 3.88 giving 

a ij        J ij 
d\G      i* At. 

/ 
1+Alj 

'2D 

After rearranging the above equation one obtains 

/♦A», 
IJ 

1 ♦ d\G 

I r + A/r 
j- ID 

3.90 

3.91 

Squaring each side of Equation 3.91 and multiplying by xh produces 

2 
t*Ali 

'2D 1  ♦ d\G 

f**'J. 2D 

'2D 3.92 

Taking the square root of each side and rearranging terms, one obtains 

d\G / 
»♦An 

'2D 

f 
1  ♦ 3.93 

'2D / 
/♦An 

'2D 

Replacing the right-hand side of Equation 3.93 with the expressions in Equa- 
tion 3.91, one obtains 

/ 
»♦A*/ 

J2D 
/♦An 

f '2D 
'ij 

which may be rewritten for our use as 

»♦Al. / 
»♦Ali 

'20    Er 

fEj- 2D 

to calculate the new dcviator stress tensor components. 

3.94 

3.95 
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Cap algorithm 

If the failure envelope is not violated by the elastic trial stresses, the trial 
stresses are checked against the loading function for the cap.  If the following 
conditions exist 

and 

or 

H(EJl,^EJ2D  ,'«) > 0 

EJX < X('K) 

EJi £ L('K) 

then the cap algorithm is invoked and the position of the cap is adjusted until 

ff('+AV/ /♦A* r 
2D 

An iterative procedure is used in the cap algorithm. To start the proce- 

dure, a trial value of dl(l) is assumed in order to calculate a new trial cap 

position '*A'/(,) = /(,) « '/ + dl(i\ where the superscript i denotes an 

iterative value. In addition, trial values of K(,) ,£(K(I)) ,X(»C(,)), and 

dtpkk are computed. Finally, a trial value of Jx is computed from the 
following relation 

r(0 f/, - 3Kdep 
kk 

3.96 

If y,(0 £ X( KU) ), a smaller value of dl(i) is assumed. If 

J,     £ L( *(l)), a larger value of dl(l) is assumed. This process is carried 

,(«)• (i) ,<•>< on until the condition I(«1") S7,v" <X(*U') is satisfied. The final value 
of / is one which satisfies the following equation to some desired accuracy 

{ «♦A/j 
'ID 

Gdi 

3{ 
** -/< '20 

3.97 

40 

where 

y1
(".«(', 

dF 

j/0./"» 

The derivation of Equation 3.97 is outlined in the following text. 

3.98 
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If we start with Equation 3.22 and substitute for d\ using Equation 3.20, 
one obtains 

deij °sijd*kk 
1 8H 

6v72D drw 

,dH 
37, 

3.99 

Recognizing that / » H, BHIdp1D   = 1 and bHldJx = -3F/dJl = £, 
we can rewrite Equation 3.99 as 

defj « s 
dep

kk 
,J r== 3.100 

Substituting the above into Equation 3.88 and rearranging gives 

1 ♦ 
Gdep

kk 

3*\ST 
-Es 'J 

3.101 

Performing the same operations on the above equation as was used on Equa- 
tions 3.91-3.93, one obtains Equation 3.97. 

The solution of Equation 3.97 is obtained through the use of an iterative 
convergence routine known as the modified regula falsi method (Sandier and 
Rubin 1979). A dimensionless function P( I) is defined as 

/»(/) 

/(«) -/ 
(i) 

/(«) -X(K) 

/^T-/ f*Al/(«) J2D 
Gd*'u 

TT 

/%T*/ l*Al|(0 
3( 

if y,(,)sX(«) 

if X(K)<J,U) <L(K) 

U) 
X(K) -J 

L(K) - X(*) 
if y,(,)^L(K) 

3.102 

where the solution P (I) - 0 is also the solution of Equation 3.97. If we can 

show that f/, < '*A'l(<) < '/, then P(/) is bounded and monotonic in the 

strict sense, and the solution /*(/)■ 0 is unique and can be found to any 
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desired degree of accuracy (Sandier and Rubin 1979).  An expression for the 
degree of accuracy or tolerated error is given by 

VhD   "/ f + A/i "att* "7 
Gde P 

2D 3* 
3.103 

< NQ[X(K)} 

where a tolerance of Nl h ( » , Jj2D  ) = 10 3 (in dimensionless format) is 
typically used. 

To show that EJX < '*A,l(l) < '/, we must recognize that /,(l) < L ( 'K ) 
must be true, since it is a condition for invoking the cap algorithm. In addi- 
tion, since 

/<'> = £y, -3Kd*p
kk 

3104 

we know that /,     > EJl, because the plastic volumetric strain increment is 
negative during volumetric compaction, i.e., when the cap expands. This 

means that the final value of ,*AtJl must lie in the range 
EJX < '*AtJx <L{'K) 

Now let us determine the lower limit of '*AtJx   , which will lead us to the 

lower limit of '*A'/('). The cap exhibits its furthest expansion when EJX is 
at the intersection of the cap and the failure envelope. When the cap is in this 

position,  '*A'JX * L('*A'K) ■ EJX, which implies that the lower bound of 'l 

'♦*'/<'> is 

'*A'/   -   /('♦*'«)   -t(f*A,K)   -    EJ 

The upper bound of '*A'l(,) is simply the value at time t, i.e.,  '*A'l * '/. 

Combining these expressions, the range of '*A'l(,) must be 
EJX <<**'/(,) <'/ 

With the above conditions satisfied, the solution to Equation 3.97 may be 
obtained. This concludes the description of the cap algorithm. A description 
of the cap model's response in the tensile regime follows. 

Tensile algorithm 

Sandier and Rubin (1979) recognized that soil tensile data is seldom ob- 
tained in the laboratory and therefore dealt with tensile behavior in a simple 
manner. They also cautioned potential users of the simplistic nature of the 
cap model in the tension regime.  A tension failure response is invoked if 
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EJl > T, where T is the tension cutoff or limit. Sandier and Rubin recom- 

mended that the final stresses be defined as  ,+A'/1 = T and '+Atstj = 0 
when the tension cutoff is exceeded.  For materials using the definition of the 
hardening parameter defined by Equatior 3.6, the plastic volumetric strain is 
defined by 

< - „u . ^L_3 3..05 

and an updated hardening parameter is determined. If the tension cutoff is not 

exceeded but EJX > 0, i.e., the elastic trial stress still lies in the tension 
regime, the stress state must be checked against both the failure envelope and 
the von Mises transition using the following inequality 

iEhü   * min(ß(£y,),F[L( '«),'« j} 

Stress states violating the von Mises transition must be returned to that surface 
using the same logic implemented for the failure envelope. Stress states lying 
on the von Mises transition will produce no plastic volumetric strains due to 
the imposed normality conditions. In addition, the von Mises transition is 
fixed because the cap hardening surface does not expand. 

Implementation of Cap Model into JAM 

Two basic operations that are associated with elastic-plastic material mod- 
els must be performed in most implicit finite element codes: (1) the construc- 
tion of the elastic-plastic constitutive matrix and (2) the calculation of the 
residual forces. The purpose of this section is to explain how these two oper- 
ations were affected by the implementation of the cap model. The later opera- 
tion will be considered first since it is a straight forward process. 

After the strain increments at tins? t * At are obtained from the solution of 
the field equations, the stresses at time / ♦ At in each element are calculated. 
The residua] forces at time t * At are then calculated based on the stress states 
in the elements.  In this operation, no substantial changes are required in the 
cap model subroutines; hence, the implementation is rather simple 

However, three components, the elastic constitutive matrix D, the plastic 
hardening modulus A, and the flow vector a, are required to calculate the 

elastic-plastic constitutive matrix D'p. The calculation of the elastic constitu- 
tive matrix is simple and needs no further discussion. In JAM, a modified 
cap-model subroutine calculates and returns values for the flow vector and the 
plastic hardening modulus. This subroutine first determines which of four 
possible regions or surfaces a stress point resides in or on, i.e., an elastic 
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region, the failure surface, the cap, or the tension cutoff. The plastic harden- 
ing modulus is nonzero only when the stress point falls on the cap since it is 
the only hardening surface.  In this case, the plastic hardening modulus is 
calculated using Equation 3.69. The flow vector is calculated by numerically 
evaluating Equation 3.66 when the stress state lies on the failure surface, the 
cap, or the tension cutoff. 

To complete the implementation, one must provide the model access to the 
material constants and an array to store the location of the cap for each nu- 
merical integration point. 

Verification 

To insure that the cap model was correctly incorporated into the finite 
element program JAM, several laboratory stress- and strain-path tests were 
numerically simulated. These calculations were compared to the output from 
a cap model driver (Chen and Baladi 198S) exercised over the same laboratory 
stress and strain paths. The two programs should produce similar if not 
identical results. 

The following tests and strain paths were simulated: a hydrostatic compres- 
sion test with one load/unload cycle, a set of constant radial stress triaxial 
compression tests, a set of constant mean normal stress tests, a uniaxial strain 
(K0) test with one load/unload cycle, and finally a test with a K0 load/constant 
axial strain (BX) unload cycle. To simulate the tests with the finite element 
program, a single element was loaded under the appropriate boundary condi- 
tions. Several loading increments were utilized during each calculation, and a 
convergence tolerance of 1 percent was satisfied at the end of each increment. 
The output at the end of each increment is represented by a symbol on the 
comparison plots. 

The simulated hydrostatic loading test consisted of an applied loading to a 
pressure level of 250 MPa, followed by an unloading to zero pressure. This 
calculation exercised the logic and code affecting both the cap movements and 
the elastic algorithms within the model and finite element program. The finite 
element and cap model driver results are compared in Figure 3.2. Output 
from the finite element program matches the cap model driver with no notice- 
able errors. 

Four constant radial stress triaxial compression tests at radial stresses of 
25, 50, 100. and 150 MPa were simulated.  Loading was terminated prior to 
reaching the ultimate failure surface, anJ unloading results were acquired for 
only three of the four calculations. The values of principal stress difference 
calculated by the finite element program were less than those of the cap model 
driver (Figure 3.3). The magnitude of the errors decreased when a larger 
number of increments was applied. 
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:igure 3.2. Simulated hydrostatic loading stress-strain response 
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Figure 3.C 1. Simulated triaxial compression stress-strain response 

Four constant mean normal stress tests at confuting pressures of 25. SO, 
100. and ISO MPa were simulated. As with the simulated triaxial compres- 
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stress tests 

sion tests, loading was terminated prior to reaching the ultimate failure sur- 
face; unloading results were not acquired. The finite element and cap model 
driver results are compared in Figure 3.4. Errors in the stresses calculated by 
the finite element program were less than those in the simulated triaxial com- 
pression tests (Figure 3.3). 

The simulated K^ test consisted of an applied loading to a vertical strain 
level of 20 percent, followed by an unloading to a small value of vertical 
stress. In this calculation, the finite element simulation was conducted with a 
displacement controlled boundary condition. This type of loading should 
produce an exact match between the finite element program and the cap model 
driver since no strain increment iterations are required in the finite element 
program. The calculated K<, stress-strain response is plotted in Figure 3.S and 
the stress path response in Figure 3.6. There are no noticeable differences be- 
tween the two calculations. 

A KQ load/BX unload test was also simulated with a displacement control- 
led boundary condition. The test consisted of an applied loading to 20 percent 
axial strain, followed by an unloading to a small value of radial stress (Fig- 
ure 3.7). In this calculation, the corner coding of the cap model was exer- 
cised as the stress path unloaded along the failure envelope (Figure 3.8). The 
calculated results suggest a proper implementation of this logic. 
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Figure 3.! S. S*'ess-strain response of simulated UX test 

Figure 3.6. Stress path from simulated UX test 
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Figure 3.7. Stress-strain response of simulated UX/BX test 

Figure 3.8. Stress path from simulated UX/BX test 
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Summary 

The features of the cap model and the relevant equations were documented 
in this chapter. In addition, the steps required to implement the cap model 
into the FE code were summarized. The implementation of the cap model 
was verified by comparing the output from die FE code and a driver for the 
cap model. 
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4    Equations of State for Air, 
Water, and Solids 

Introduction 

The materials of interest to this investigation include partially-saturated 
soil- and rock-like geomaterials and man-made concretes, grouts, and grout- 
cretes. As outlined in Chapter 2, the equations developed from the Biot 
theory require an expression for the bulk modulus of die pore fluid ami the 
grain solids. To determine the bulk modulus of the pore fluid, the concept of 
a homogeneous pore fluid will be adopted to treat partially-saturated materials. 
This investigation will assume that the liquid within the pore space is water 
and the gas within the pore space is air. Thus, the pore fluid will be regarded 
as a compressible mixture of air and water. Based on the equations of state 
(EOS) for air and water, we will develop equations for the bulk modulus of 
this air-water mixture. The grain solids «ill be treated as either linear or 
nonlinear elastic materials or as nonlinear hysteretic materials; each method 
for calculating the bulk modulus of the grain solids will be described. 

Equation of State for Water 

Over the pressure range of interest to this investigation, i.e., 0 to 600 
MPa, water has a finite compressibility and should be treated as a nonlinear 
elastic compressible material. The compressibility of water is depicted in 
Figure 4.1 as a plot of pressure versus volume strain. The reader should note 
that at 600 MPa the volume strain of water is nominally 14 percent. The bulk 
modulus or compressibility of water was evaluated from the Walker-Sternberg 
EOS for water (Walker and Sternberg 1965). which is valid for pressure 
levels of up to SO GI*a. The EOS expresses the water pressure as an analyti- 
cal function of the density and the internal energy of the water.  For this 
investigation, the energy dependent terms in the EOS were not included due to 
the assumed quasi-static and isothermal nature of the intended calculations. 
Without the energy terms, the EOS is expressed as 
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Figure 4,1. Pressu re versus volume strain response of water 

P - P/I + P3/2 
+ P5/3 + />7/4 - J»c 4.1 

where P is the pressure in the water, p is the density of the water, /, are 

material constants and PQ is the initial pressure. If we define volumetric 
strain as 

-** i-!2 4.2 

then the bulk modulus of water may be expressed as 

„        dP      p2 dP 
PO  rfP rfe 

4.3 
kk 

Substituting Equation 4.1 into Equation 4.3, one obtains the final expression 
for the bulk modulus of water as a function of density 

'.'-(p2fi *3p4/2 -5p6/3-7p8/4 
Po 

4.4 

In the FE program, pressure is the known quantity, not density. Since the 
EOS expresses pressure and bulk modulus as a function of density, Newton's 
method was used to calculate the density for a given pressure, then the bulk 
modulus was calculated. 
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Air-Water Compressibility 

Background 

The concept of a homogeneous pore fluid (HPF) was first introduced by 
Chang and Duncan (1977). In using their concept, one assumes that a 
three-phase material containing air, water, and solids may be replaced with a 
two-phase material containing a compressible pore fluid and solids. A partial- 
ly-saturated material is transformed into a fully-saturated material with a HPF. 
Effective stress is calculated in the same manner as for a fully-saturated mate- 
rial, and the modulus of the pore fluid is calculated based on the modulus or 
compressibility of an air-water mixture. The concept is applicable to materi- 
als with saturation levels greater than 85 percent.  At these levels of satura- 
tion, the air should be in the form of occluded bubbles uniformly distributed 
throughout the water, and the air and water pressures should be identical. At 
lower saturation levels, one can not guarantee that the air and water pressures 
will be the same. 

The compressibility of air-water mixtures has been studied by several 
investigators. Bishop and Eldin (1950) examined non-zero total-stress friction 
angles measured during undrained shear tests. They attributed the observed 
behavior to incomplete saturation of test specimens. Using Boyle's and 
Henry's Laws, they developed expressions for the compressibility of an air- 
water mixture without accounting for surface tension effects. 

Schuurman (1966) reviewed the work of previous investigators and con- 
cluded that surface tension effects must be included in an air-water compress- 
ibility formulation. Schuurman claimed to be the first to attempt such a for- 
mulation. Schuurman assumed that at saturation levels greater than 
85 percent, the air existed in the form of bubbles. However, to account for 
surface tension, the radius of the air bubbles was required, yet little if any 
experimental data was available to provide this necessary information. 
Schuurman's formulation also differed from that of Bishop in that he wrote his 
expressions in terms of the current volume of air as opposed to the original 
volume, and he assumed the water was incompressible. 

Fredlund (1976) also developed an expression for the compressibility of an 
air-water mixture using a formulation in which the water had a finite com- 
pressibility. He accounted for surface tension in a manner that did not require 
a knowledge of air bubble sizes by using a parameter for air-water pressures 
similar to Skempton's B parameter, which could be evaluated experimentally. 
Fredlund also interpreted the mixture volume in the expression for compress- 
ibility as the volume of water plus free air as compared to water plus total air. 

Chang and Duncan (1977) based their expressions for the compressibility 
of an air-water mixture on the equations of Schuurman.  Like Schuurman, 
they included surface tension effects in their formulation and assumed the 
water was incompressible. 
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Alonso and Lloret (1982) reviewed the work of previous investigators, 
compared the compressibility curves of each, and formulated their own ex- 
pressions for the compressibility of an air-water mixture. They assumed a 
finite compressibility for water and accounted for surface tension in the same 
manner as Fredlund. 

In summary, there are significant differences in the equations developed by 
several investigators for air-water mixtures.  For this reason, equations for the 
compressibility of an air-water mixture will be developed in this chapter. 
Prior to developing the equations, a brief description of the appropriate physi- 
cal laws will be provided. 

Boyle's and Henry's laws 

Boyle's and Henry's Laws will be used in developing equations for the 
compressibility of an air-water mixture. These laws are defined and explained 
(or purposes of completeness. Boyle's Law states that "at a constant tempera- 
ture, the volume of a given quantity of any gas varies inversely as the 
pressure to which the gas is subjected" (CRC Handbook 1980). 

Air dissolves in water according to Henry's Law, which states that "the 
weight of gas dissolved in a fixed quantity of liquid, at constant temperature, 
is directly proportional to the pressure of the gas above the solution" (Fredlu- 
nd 1976).  Fredlund (1976) explains that the structure of water molecules pro- 
duces a "porosity" within the water of approximately 2 percent by volume. 
This porosity can be filled by a gas such as air, i.e., air dissolves in water by 
filling this pore space (see Table 4.1). 
Fredlund (1976) provides a simple 
analogy to understand the compress- 
ibility of an air-water mixture. 

Table 4.1. 
Solubility of Air in Water 

Consider a test vessel made of a 
cylinder and piston.  At the base of 
the cylinder is a porous stone having a 
porosity of 2 percent; the porous 
stone simulates the behavior of the 
water.  The piston is initially posi- 
tioned some distance above the stone 
with air filling the space in between. 
An imaginary valve at the surface of 
the porous stone controls the move- 
ment of air into the stone. The air in 
the porous stone simulates the air dis- 
solved in water.  If the valve is closed 
and the piston moves down into the cylinder, the air above the stone com- 
presses following Boyle's Law   If the valve is opened, some of the air will 
diffuse into the porous stone following Henry's Law.  This process will con- 
tinue until all of the air passes into the porous stone   When the piston con- 

Temperature 
Degrees C 

Henrv's 
Constant 

0 0.02918 

4 0.02632 

10 0.02284 

15 0.02055 

20 0.01868 

25 0.01708 

I                 30 0.01564 

i                     from Fredlund (1976) 
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tacts the porous stone, there is a discontinuity in the compressibility of the 
system; the compressibility jumps immediately to that of water. The level of 
saturation within an air-water mixture must be evaluated to determine the 
discontinuity point. 

Derivation of equations 

The following assumptions were made for this analysis. We will assume 
initial saturation levels are greater than 85 percent, which implies that all air 
bubbles are occluded. Surface tension effects will be neglected, which allows 
us to assert that the air bubbles within the water will be at the same pressure 
as the water. The air is soluble in water and observes Henry's Law, and the 
rate of increase in pore water pressure from any simulation is slower than the 
rate of diffusion of air in water. Finally, prior to full saturation, the com- 
pressibility or bulk modulus of water is a constant. We will first develop the 
equations for an air-water system with a rigid porous skeleton, then one with 
a compressible porous skeleton. 

The following terms are used in the derivation of the compressibility of an 
air-water mixture. Let 

V denote the total volume of air and water, 
Vv the volume of the void space, 
Vw the volume of water, 
Vd the volume of dissolved air, 
Va the total volume of air, 
V'a the volume of free air, which is equal to Va - Vd, 
Pw the pore water pressure, 
Pa the pore air pressure and 
H Henry's constant. 

A subscripted "o" is used to indicate an initial value. The total mass of air 
and water remains constant. Substituting expressions for porosity (n) and sat- 

uration (5), the initial volumes of water Vw0 and free air Vao may be 
expressed as 

* S0 Vv0 % v, s0 
4.5 

and 

V„"<» -S0)VV0 = n0V0(l -S0) 4.6 

Using Henry's Law and Equation 4.5, the initial volume of dissolved air may 
be expressed as 

Vd0-  Ko" -»oVoS0H 4.7 

The sum of Equations 4.6 and 4.7 yields an expression for the initial total 
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volume of air in the system 

Vao = n0V0(l-S0+S0H) 4.8 

Expressions for the compressibility of water and an air-water mixture may be 
written as 

r   -       1   dV» 
v-ui   ~ -rr- 4.9 

Vw dPw 

and 

"m 
V   + V ra       Tw 

dPw      dPw 

4.10 

respectively. Substituting Equation 4.9 into Equation 4.10 one obtains 

cm = 
V   + V 

- V c 
dp-, 

4.11 

We will now use Boyle's Law to develop an expression for the derivative 
in Equation 4.11. Boyle's Law may be written as 

V P   = V   P Ja'a      'ao'ao 4.12 

If we assume the pore and air pressure are equal and Vd = Vdo, we can write 
the following 

P P V   + V 'ao       ' wo        Ta        d 

P" Pw        Vao + Vd 

4.13 

from which we write 

dIz 
dv' 

ao       d P 
1   ■ \2 ' ao 

k ♦l) 

V 'ao P ' ao 

4.14 

Substituting the latter expression in Equation 4.14 into Equation 4.11, one 
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obtains 

'm 
V   + V V    P Tao ' ao 

+ v»cw 
4.15 

which is an expression for the compressibility of an air-water mixture. By 
judiciously substituting for the volume terms in Equation 4.15, we will devel- 
op a final expression for the compressibility of the mixture. 

By combining Boyle's Law ( Equation 4.12) and Equation 4.8, we may 
write an expression for the current total volume of air 

ao ya--^n0V0(l-S0 + S0H) 4.16 

The current volume of water may be expressed as 

Vw = Vwo(l + CW6P) 4.17 

and, after substituting for Vwo, as 

V„*n0VoS0(l +CW6P) 4.18 

The current volume of dissolved air, which is a function of Henry's Law and 
the current volume of water, is written as 

Vd*n0V0S0H(l +CW6?) 4.19 

Subtracting Equation 4.19 from Equation 4.16, one obtains an expression for 
the current volume of free air 

va -»„v.! !^(l-S0 + S0H) -S0H(l+Cw6P) 
"a 

4.20 

Adding Equations 4.20 and 4.18. one obtains 

V   ♦ V   = n V ' rfl rw       "o To 
ao (\-S0+S0H) ♦ S0{1- H)(\ + CW6P) 

4.21 

which will eventually be substituted back into Equation 4.15   Combining 
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Equations 4.8 and 4.16, one may write 

'ao 

ao n0V0(l-S0 + S0H) 4.22 

and, by multiplying Equation 4.18 by the compressibility of water and 
dropping the higher order terms, one obtains 

•»v ^w ~ no "o ^o ^w 4.23 

Substituting Equations 4.21, 4.22, and 4.23 into Equation 4. IS yields the final 
expression for the compressibility of an air-water mixture 

'm 
ao (1- S0 + S0H) *Se(l-H)(\-Cw6P) 

"(l-S0 + S0H)+S0Cw 

4.24 

In a similar manner, an expression for the level of saturation may be devel- 
oped and written as 

S = 
V   * V 

S0(l + CW6P) 
4.25 

ao (\-S0*S0H) +S0(l-H)(\+ CW6P) 

When the porous skeleton is compressible, the current void volume may be 
expressed as 

va*K- V».-««> 4.26 

where V0 is the initial toul volume of voids and solids and t kk is the effec- 
tive volumetric strain. Substituting the above and Equation 4.18 into the first 
expression in Equation 4.25, one obtains 
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s = 
n0S0(l-Cw8P) 

V   + V 
4.27 

% ~e kk 

which is an expression for the level of saturation in a deforming porous skel- 
eton. An equation for the compressibility of an air-water mixture within a de- 
forming porous skeleton may be obtained by combining Equations 4.15, 4.22, 
4.23, and 4.26 to yield 

"m 
:** 

-Z(l-So + SoH) + S0Cw 
4.28 

In the process of a calculation, one must first evaluate Equation 4.27. If 
the level of saturation is less than one, Equation 4.28 is used to calculated the 
bulk modulus of the pore fluid. If the level of saturation is equal to one, the 
bulk modulus of the pore fluid is calculated from the EOS of water, i.e., 
Equation 4.4. 

To illustrate the response of a partially-saturated material to an applied 
loading, an example calculation was conducted and the output graphically 

IV, 

»• 1 -2 

/ 8-0.9                                                              / ,' 
n - 0.2                                                            / , 
E - 1800                                                       / < 

-     K - lOOO                                                         /   ' 

Modulus of             / •        All air peroait* 
V                     f i*****"^ eruahoa out 

-».«          i ■   »  ■     » 

Figure 4.2.  Pressure-volume response of partially-saturated material 
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presented in Figure 4.2. The simulated material has a Young's modulus of 
1800 MPa. a bulk modulus of 1000 MPa. a total porosity of 20 percent, a 
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Saturation level of 90 percent, and an air porosity of 2 percent. The material 
was loaded under undrained uniaxial strain boundary conditions. At volume 
strains less than approximately 2 percent, the generated pore pressures are 
negligible, and the loading bulk modulus is equal to the skeletal bulk modulus 
of 1000 MPa.  At these strains levels, the material loads as if it were fully 
drained. At a volume strain of 2 percent, all of the air porosity is eliminated, 
and the pore fluid becomes fully saturated and begins to carry a major portion 
of the applied stress. At these strain levels and above, the material loads as a 
fully-saturated material. In addition, the pressure-volume response is nonlin- 
ear due to the nonlinear nature of the water. 

Equation of State for Solids 

Three methods for calculating the bulk modulus of the grain solids were 
implemented into the FE program. The first method assumes the grain solids 
are linear elastic materials.  The second method uses an analytical EOS and 
treats the solids as a nonlinear elastic material. The third method uses a 
simple model to simulate the nonlinear hysteretic material behavior of the 
grains. 

The first method is self explanatory; the program simply uses a constant 
bulk modulus value for the entire calculation. In the second method, an ana- 
lytic relationship between pressure and compression is developed for each 
material. Compression is defined as 

a =      f 4.29 

where t is the Cauchy or engineering strain.  Using solid carbonate as an 
example material, the pressure-compression relationship is linear below 
1.2 GPa and may be written as 

Pg * 0.7 M 4.30 

where P  is the gram pressure.  The bulk modulus for carbonate may then be 

written as 

K   =11- M):4^ *07<1-M)2 4.31 

A plot of pressure versus volumetric strain for carbonate is plotted in 
Figure 4.3 Other materials may be simulated in an analogous manner 

The third model, which simulates nonlinear hysteretic material behavior, 
uses tabulated curves that describe the loading and unloading pressure-volume 
response of the grains   This model is based on the work of Meier (1986), 

Chapter 4  Equations o* Stale for A». Water, and Solids 
59 



£      *0D    - 

»»'„<•>*      Il>|.n « 

Figure 4.3.  Pressure versus volume strain response of carbonate 

who used a similar model for one-dimensional, plane-wave ground shock 
calculations. 

During virgin loading, the volume strain is computed from the current 
value of pressure through linear interpolation of the tabulated loading curve. 
A similar process is employed when unloading occurs from pressure levels at 
or above the lockup point using the tabulated unloading curve. When unload- 
ing takes place from pressure levels below the lockup point, a scaling process 
must be applied to the tabulated unloading curve. In this scaling process, let 
Pm and tm represent the peak pressure and peak volume strain, respectively, 
from which unloading commences (see Figure 4.4). The pressure and volume 
strain scaling factors are calculated as 

/. 
P, 

P   - P 
4.32 

and 

/, ■ (1 " <*)fP ♦ a 4.33 

where Pt is the pressure at lock up. P, is the tension cutoff pressure, and a is 
an empirically determined calibration constant with values ranging between 
zero and unity. Knowing the unloading pressure (P,), the recovered pressure 

(4P), which is the difference between the pressure »: lock up and the value 
of pressure on the tabulated unloading curve, is calculated in the following 
manner 
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Figure 4.4.  Nonlirtear-hysteretic model 

*P-(Pm-P,)fP 
4.34 

The recovered strain (A e) is computed through linear interpolation of the 
tabulated unloading curve. The unloading volume strain («,) is calculated by 
subtracting the scaled value of recovered strain from the peak strain 

4.35 

The bulk modulus on this unloading curve is calculated as 

K, -K.ifjf.) -*, a 4.36 

where Ku « AP1A t. Reloading occurs along a line passing between the 

last unloading pressure-volume strain point and the point Pm, tm, 
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i Summary 
i 

The algorithms required to numerically simulate the behavior of the three # 
primary constituents of geomaterials, air, water and solids, were documented 
in this chapter. When these algorithms are combined with an appropriate A 
skeletal model into the FE formulation of Biot's theory, the multikilobar 
response of any geomaterial may be calculated. 

•        i 
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5    Features and Verification of 
FE Program 

Introduction 

The objectives of this chapter are to (1) describe features in the FE pro- 
gram that have not already been introduced and (2) present solutions from 
several verification problems as proof that the program works correctly. 
Several features of the FE program have already been introduced. In Chap- 
ter 2, the benefits gained from effective stress simulations of multi-kilobar 
material behavior and the available material models were described. The cap 
mode! was documented in Chapter 3 and the equations of state of air, water, 
and solids were described in Chapter 4. 

The following features will be presented in this chapter. A restart feature 
was implemented into the FE program to permit the simulation of certain 
laboratory tests. For example, a consolidated undrained triaxial compression 
test wherein the consolidation phase has drained boundary conditions and the 
shear phase has undrained boundary conditions requires changing fluid flux 
boundary conditions. A brief summary of the postprocessing procedures will 
also be presented. These features are described in the next section. 

The final sections of this chapter document solutions from several 
verification problems.  For each problem, the FE solution is compared to 
a ailable closed form or analytic solutions. These verification problems 
e. iblish the FE program's ability to correctly solve a variety of initial and 
boundary value problems. 

Additional Features of FE Program 

Restart feature 

The restart feature was implemented for the purpose of allowing the user to 
change the boundary conditions at a preselected time in the calculation. A 
KQ/BX/STX test (acronyms defined subsequently) is an example of a labora- 
tory test with changing boundary conditions. This test is conducted by 
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loading a cylindrical specimen to a desired mean normal stress level under K,, 
or uniaxial strain boundary conditions, unloading to a desired mean normal 
stress level under constant axial strain (BX) boundary conditions, and then 
conducting a constant radial stress triaxial compression (STX) test at yet 
another mean normal stress level. The K^ loading and the BX unloading 
phases may be numerically simulated with displacement controlled boundary 
conditions. However, to realistically attempt to simulate the STX phase, the 
user should apply stress controlled boundary conditions. The restart feature 
implemented into JAM allows the user to perform this calculation in a simple 
manner. 

Postprocessing 

In many instances, one would like to plot FE results at a single location, 
e.g., at the nodal points. Many postprocessing FE software packages require 
stress and strain values at the nodes rather than at the Gauss integration 
points. A procedure was implemented in the FE program JAM to extrapolate 
and smooth Gauss point data to the element vertices, i.e.. corner nodes. 
Values at the midside nodes were then calculated from the values at the 
appropriate corner nodes. 

The implemented smoothing procedure was developed and described by 
Hinton, Scon, and Ricketts (1975) and Hinton and Campbell (1974).  The 
procedure is simple and straightforward. The smoothed stresses at the nodes 
may be calculated from the expression 

5.1 

51 "a b c b~ "I 

d2 

a3 
• = 

babe 

c b a b 
* "u 

*4 
b c b a 0rv 

where the a, are the smoothed stresses, at, au, am and ajy are the stresses 

at the integration points, and a■ « 1 ♦ — ,   fc = - _ and   c - 1 - -— 

At a given corner node, smoothed values from adjacent elements are averaged 
to yield a single value. 

Plane and Axisymmetric Verification Problems 

Five problems with plane or axisymmetric geometries were solved with 
JAM to test and verify that the material models, the eight-node quadrilateral 
element, and numerous other algorithms were correctly implemented in the FE 
program.  For each of the five problems, selected output from JAM are 
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compared with closed form or analytic solutions. 

A  Y 

/I - 
nimm 

A B c!Z  ' rrnfmr ; 
1 

<- -> 

Figure 5.1. Geometry and loading conditions for Verification Problem 1 

Verification Problem 1 exercises a single element under distributed normal 
and shear loads of 1000/length as shown in Figure 5.1. The element sim- 
ulates an isotropic linear elastic material having a Young's modulus of 30 x 
10 6 and a Poisson's ratio 0.3. The following boundary conditions were 
imposed: 

ux * «y = 0 at point A   and  uy * 0 at points B and C 

Tabl« 5.1. 
Results from Verification Problem 1 

S tratt 
or 

Strain 

Plan« Strain Mana Straw 

JAM Afntyfic JAM Anatytie 

o. 1000. 1000. 1000 1000 

o, 1000. 1000. 1000. •1000. 

•« 1000. -1000 1000. 1000. 

°t 600 600 0 0. 

', • 1 733*10* • 1.733*10* -2.333*10* 2.333*10* 

«V 1,733x10* 1 733*10* 2.333*10* 2.333*10* 

^— -8.667*10* -6.667*10* •8.667*10* 8.667*10* 

Table 5.1 compares stress and strain states calculated from the FE and 
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analytic solutions (Hibbitt, Karlsson and Sorensen 1989) for this problem 
under plane strain and plane stress boundary conditions. This problem 
exercises the elastic constitutive model, verifies that the eight-node quadratic 
element accurately models constant strain states, and also checks that 
distributed loads are correctly simulated. The results from JAM match the 
analytic solution exactly.  Verification Problem 1 was also successfully solved 
using the Cap model algorithm. 

L 
immii 

1000 

ABC 

ttttttttt 
X 2    —> 

m   7S 

-  V 

Figure 5.2.  Geometry and loading conditions for Verification Problem 2 

Verification Problem 2 exercises a single axisymmetric element under 
distributed normal loads of 1000/area as shown in Figure 5.2. The element 
simulates an isotropic linear elastic material having a Young's modulus of 
30 x 10 6 and a Poisson's ratio 0.3.  The following boundary conditions were 
imposed: 

u. = 0 at points A, B. and C 

66 

Table 5.2 compares stress and strain states calculated from the FE and 
analytic solutions (Hibbitt, Karlsson and Sorensen 1989) under the imposed 
axisymmetric boundary conditions. Like Verification Problem 1, problem 2 
exercises the elastic constitutive model, verifies that the eight-node quadratic 
element accurately models constant strain states, and also checks that 
distributed loads are correctly simulated. The results from JAM match the 
analytic solution exactly. 

Piane and axisymmetric patch tests were employed in Verification 
Problems 3 and 4.  In the patch test, nodal point displacements are applied to 
a patch of elements such that a constant state of strain exists throughout the 
mesh.  In Verification Problem 3, the elements simulate an isotropic linear 
elastic material having a Young's modulus of 30 x 10 6 and a Poisson's ratio 
0.3. The imposed displacement boundary conditions were applied to the patch 
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Table 5.2. 
Results from Verification Problem 2 

Strass 
or 

Strain 

Axisymmatric 

JAM Analytic 

°< -1000. -1000. 

°i -1000. -1000. 

°n 0. 0. 

°S -1000. -1000. 

*, -1.333 x10"5 -1.333 x10s 

(
i -1.333x10"5 -1.333 x10s 

yn 
0. 0. 

<« -1.333 x 10s -1.333 x10"5 

Y 

.12 

-V X 
K              .24               >      x 

Figure 5.3.  Geometry for Verification Problem 3 

of elements shown in Figure 5.3 and were calculated as: 

u   = *> xlO and   Ut 
x 

y * - 
2 

xlO 

Table S3 compares stress and strain states calculated from the FE and 
analytic solutions (Hibbitt. Karlsson and Sorensen 1989) for this problem 
under plane strain and plane stress boundary conditions. The results from 
JAM match the analytic solution exactly.  Verification Problem 3 was also 
successfully solved using the Cap model algorithm. 

Verification Problem 4 consists of a patch of axisymmetric elements 
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Table 5.3. 
Results from Verification Problem 3 

Strass 
or 

Strain 

Plana Strain Plana Strass 

JAM Analytic JAM Analytic 

°* 1600. 1600. 1333. 1333. 

°v 1600. 1600. 1333. 1333. 

"xv 400. 400. 400. 400. 

at 800. 800. 0. 0. 

fx 1.x 10'3 1.x 10'3 1.x 10-3 1.x 10"3 

<v 1.x 10"3 1.x 10-3 1.x 10"3 1.x 10"3 

1.x 10"3 1.x 10"3 1.x 10"3 1.x 10'3 

Figure 5.4.  Geometry for Verification Problem 4 

simulating an isotropic linear elastic material having a Young's modulus of 
30 x 10° and a Poisson's ratio 0.3. The imposed displacement boundary 
conditions were applied to the patch of elements shown in Figure 5.4 and 
were calculated as: 

ur *  Ur~ 1000) ♦£ 1 xlO 3   and   u. -  \z ♦ — 1000) xlO 

Table 5.4 compares stress and strain states calculated from the FE and 
analytic solutions (Hibbitt. Karlsson and Sorensen 1989) for this problem. 
The results from JAM match the analytic solution exactly. Verification 
Problem 4 was also successfully solved using the Cap model algorithm. 
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Table 5.4. 
Results from Verification Problem 4 

Stress 
or 

Strain 

Axisymmatric 

JAM Analytic 

°, 5.769 x10* 0.769x10* 

°z 5.769x10* 5.769x10* 

°n 1.154x10* 1.154x10* 

°e 3.462x10* 3.462x10* 

', 1.x 10'3 1.x103 

ez 1.x Iff3 1. x 103 

y<* 1.x Iff3 1.x 103 

<» 0. 0. 

I 

•    I 

~igure 5.5.  Mesh geometry for Verification Problem 5 

Verification Problem 5 is a plane strain simulation of a thick wall cylinder 
subjected to an increasing internal pressure.  Due to the symmetry of the 
problem, a quarter grid was used in the calculation; the problem geometry and 
FE mesh are shown in Figure S.S. The material was modeled with the 
following properties, a Young's modulus of 21000, a Poisson's ratio of 0.3, a 
yield stress of 24 and a linear hardening modulus of 0. When a cylinder with 
these properties is subjected to an increasing internal pressure above 10.4, an 
elastic-plastic boundary moves through the cylinder; on the external side of 
the boundary, all of the strains are elastic, and on the interior side, the strains 
are elastic-plastic. Table 5.5 compares stresses calculated from the FE and 
analytic solutions (Hodge and White 1950; Prager and Hodge 1951) at several 
radii within the elastic region for an applied internal pressure of 18, which 
places the elastic-plastic boundary at a radius of 160. The computed results 
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Table 5.5. 
Results from Verification Problem 5 

Strass Radius 

Plane Strain 

JAM Analytic 

Max. 
Principal 
Stress 

or 

°t 

163.64 22.12 22.09 

176.32 20.32 20.25 

193.64 18.37 18.31 

"i > 160 5.33 5.31 

h > 160 23.11 23.03 

are well within the imposed convergence tolerance of 1 percent. The results 
from JAM also agree with the results calculated by Owen and Hinton (1980) 
for this problem. This validates the plasticity formulation in JAM. 

Consolidation Problems 

To verify that the FE program could solve consolidation problems, output 
from JAM were compared to the results calculated from closed form solu- 
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Figure 5.6. Pore pres sure versus depth at two time incremei us 

tions. Boundary conditions and material properties were altered to fully exer- 
cise different features within the FE program.  In Figure 5.6, depth versus 
calculated pore fluid pressures are plotted in a normalized format at two dif- 
ferent time increments for a one-dimensional consolidation problem in which 
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the soil column was idealized as an elastic porous skeleton with an incompres- 
sible pore fluid. Good agreement is shown between the FE results and the 
closed form solution. A similar one-dimensional problem was solved with 
two materials having compressible pore fluids, where the ratios of pore fluid 
modulus to skeletal modulus (N) were 2000 (nearly incompressible pore fluid) 
and 5 (highly compressible pore fluid).  Results from the FE program and the 
closed form solution (Chang and Duncan 1983) are plotted in Figure 5.7 as 
normalized displacements versus time factor, i.e., normalized time.  Again, 

1.0 
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S       0.4 
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0.0 
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O FE Solution 
D  FE Solution 
    SartM Solution 

N - 2000 

10 -3 10 -2 10 -1 10° 101 

Tim« Factor 

Figure 5.7.  Displacement versus time for one-dimensional consolidation of 
an idealized elastic material 

the results show reasonable agreement between the FE results and the closed 
form solution. 

A two-dimensional axisymmetric consolidation problem consisting of a 
circular foundation on a finite soil layer (Figure 5.8) was also calculated.  The 
mesh is A units high by 10A units wide, and a uniform vertical load of radius 
A was applied to the top surfaces of three elements to simulate the foundation 
loads.  The following boundary conditions were invoked for this problem. 
The vertical edges of the mesh (A-D and B-C) were constrained in the radial 
direction, the bottom edge of the mesh (C-D) was constrained in the vertical 
direction, the top surface (A-B) was free draining, and no flow conditions 
were applied to the three remaining surfaces (B-C. C-D. and A-D). The cal- 
culated settlements (in dimensionless format) from JAM (solid circles) are 
compared in Figure 5.9 to settlements calculated from the analytical solution 
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Figure 5.8 Mesh geometry for Axisymmetric Consolidation Problem 
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Figure 5.9 Displacement vs Time from 20 Consolidation Problem 

(solid line).  Again, there is excellent agreement between the calculation and 
the analytical solution. 
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Cryer Problem 

A numerical simulation of Cryer's problem (Cryer 1963) was conducted as 
an additional verification test of the FE program.  Cryer developed a closed 

i 

1     1      1      1 
'                   i                   i                  ,1 | 

Rsdus 

Figure 5.10.  Mesh geometry for Cryer Problem 

• • 

Figure 5.11.  Dimensionless pore pressure response for Cryer's problem 

form solution to the problem of a sphere of elastic porous material loaded on 
the surface by a constant uniform pressure and having drained boundary con- 
ditions. For values of Poisson's ra .o less than 0.5, pore pressure at the 
center of the sphere increases to stress levels greater than the externally 
applied pressure and then dissipates. The greatest increase in pore pressure 
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occurs for values of Poisson's ratio equal to 0. This response is called the 
Mandel-Cryer effect after the two mathematicians who discovered the phe- 
nomena.  Gibson et al. (1963) conducted laboratory experiments on clay 
spheres and were able to reproduce the Mandel-Cryer effect.  They demon- 
strated that the total stress within a consolidating sphere is not time invariant 
as predicted by Terzaghi-Rendulic consolidation theory.  Dimensionless total 
stress at the center of the sphere increases above unity and approaches unity at 
late time. 

i 
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Figure 5.12.   Dimensionless displacement response for Cryer's problem • < 

Figure 5.13.  Pore pressure contours for Cryer Problem 
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Utilizing the symmetry of the problem, the soil sphere was represented by 
the mesh depicted in Figure 5.10 and calculated as an elastic axisymmetric 
problem. A unit pressure was placed on the boundary during the first incre- 
ment of loading and held constant thereafter. Figure 5.11 and Figure 5.12 
compare the results from JAM with the closed form solution for a value of 
Poisson's ratio equal to 0. Figure 5.11 is a plot of dimensionless pore 
pressure at the center of the sphere versus the square root of dimensionless 
time; Figure 5.12 is a plot of dimensionless displacement of th» outer surface 
of the sphere versus the square root of dimensionless time. The comparison 
between the FE calculation and the closed form solution is very good. Pore 
pressure contours at a dimensionless time of approximately 0.04 are plotted in 
Figure 5.13.  At this early time, a significant portion of the sphere has pore 
pressures greater than unity. 

Summary 

In this chapter, the restart and post-processing features of the FE program 
were described. The documented verification problems indicate that the FE 
program correctly calculates one- and two-dimensional consolidation problems 
and elastic and elastic-plastic boundary value problems. Although the success- 
ful calculation of these verification problems does not certify the FE program 
is error free, they should increase the confidence of the end user. 
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Introduction 

Numerical simulations of limestone behavior under drained and undrained 
boundary conditions are presented in this chapter. The ability of the 
14-parameter cap model to simulate the basic drained behavior of limestone is 
demonstrated by comparing calculated responses of hydrostatic, uniaxial 
strain, and triaxial compression loadings with measured or recommended lime- 
stone responses. In a similar manner, the ability of the FE code to calculate 
the undrained behavior of limestone is demonstrated by comparing calculated 
responses of uniaxial strain loadings with recommended limestone responses. 
Finally, some example calculations are documented that demonstrate the utility 
of die FE code in analyzing laboratory test specimen conditions. 

Salem Limestone 

The limestone simulated in this chapter is commonly referred to as Salem, 
Bedford, or Indiana limestone. It was extracted from the Salem formation 
near the community of Bedford, Indiana. Mechanical property tests were 
conducted on intact specimens of 13.5-percent porosity Salem limestone by the 
Vermont office of Applied Research Associates. These mechanical property 
tests included drained and undrained (with pore pressure measurements) 
hydrostatic loading tests, K^ or uniaxial strain tests, triaxial compression tests, 
and strain path tests.  Laboratory test data and recommended material proper- 
ties were obtained from Blouin and Chitty (1988a, 1988b) and Zelasko (1991). 

Simulations 

Process 

Prior to numerically simulating limestone behavior under drained or 
undrained boundary conditions, the skeletal or drained behavior of Salem 
limestone was required. The 14-parameter cap model, which was documented 
in Chapter 3. was fit to recommended drained Salem limestone mechanical 
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properties. With this model and fit implemented into JAM, drained single- 
element boundary value problems were conducted to insure the FE code 
would reproduce the cap model calculations. Undrained single-element 
boundary value problems were then conducted. 

Drained limestone simulations 

The following recommended drained Salem limestone mechanical proper- 
ties were available for fitting: a failure envelope, hydrostatic load and unload 
behavior, K^ stress-strain behavior, K^ pressure-volume behavior and K^ 
stress paths, stress-strain curves from triaxial compression tests conducted at 
several confining stress levels, and strain path data along three different paths. 

Typically, a high fidelity fit of both the hydrostatic loading and K„, or 
uniaxial strain, responses is impossible to capture with a relatively simple cap 

Figure 6.1.  Drained K0 stress-strain comparison 

model.  For this reason, greater emphasis was placed on fining the uniaxial- 
strain stress path and stress-strain responses and less emphasis on the hydro- 
static loading response.  In Figures 6.1-6.3, the calculated drained K^ stress 
and strain responses from the 14-parameter cap model are compared to the 
recommended drained Kc behavior.  Figure 6 1 compares the drained K„ 
stress-strain behavior. Figure 6.2 the K^ stress paths, and Figure 6.3 the K„ 
pressure-volume responses. The quality of the fits are very good. To make 
these fits, one must compromise between fining the KQ stress path and the K„ 
stress-strain behavior.  The model K^ stress-strain response breaks over at a 
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Figure 6. 2. Drained K0 stress path comparison 
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Figure 6.C J.  Drained K0 pressure-volume comparison 

vertical stress of approximately ISO MPa.  A better match to the stress-strain 
behavior would require the Kg stress path to break over at a higher value of 
principal stress difference. Higher fidelity was desired in the K^ stress path. 
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In Figure 6.4, the calculated drained hydrostatic pressure-volume response 
of Salem limestone is compared to the recommended behavior. The quality of 
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Figure 6.4.  Drained hydrostatic load-unload comparison 

the fit is not very good because greater emphasis was placed on fitting the Kg 
behavior. Only a very complicated cap model, with several tens of fining 
parameters, would fit both the hydrostatic and KQ behavior of ihis material. 

Drained triaxial compression (TXC) tests at confining pressures of 100 and 
400 MPa were also simulated with the cap model. The calculated responses 
are plotted as principal stress difference versus axial strain and compared to 
actual test results in Figures 6.S and 6.6. The quality of the fits is quite good 
considering the error introduced into the calculations by the lack of fidelity in 
the calculated hydrostatic pressure-volt me response. 

Undrained limestone simulations 

The following single-element undrained simulations were performed using 
the Walker-Sternberg EOS for water and a carbonate EOS for the gram solids. 
The cap model fit to the recommended drained limestone properties modeled 
the skeletal behavior of the limestone. 

An undrained KQ test conducted on a fully-saturated specimen of Salem 
limestone was simulated with the FE code. The output is compared to the 
available recommended properties is another method of verifying the FE 
code. The calculated and recommended stress-strain responses are compared 
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Figure 6.6.  Drained TXC stress-strain comparison at 400 MPa confining 
pressure 
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in a plot of total vertical stress versus total vertical strain (Figure 6.7). The 
calculated undrained K^ stress-strain response replicates the recommended 
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Figure 6.8.  Undrained K0 stress path comparison 

stress-strain response perfectly duhng die loading phase, while the unloading 
is slightly suffer. The calculated and recommended stress paths are compared 
in a plot of principal stress difference versus total mean normal stress 
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(Figure 6.8). The correlation between the calculated and the recommended 
stress paths is excellent. 

The total (solid), effective (short dash) and pore fluid stresses (long dash) 
for the simulated undrained Kj, test are presented in Figure 6.9 in the format 

:igure 6.9.  Stresses in a simulated undrained K0 test 

82 

of stress versus total volume strain. This figure illustrates that, even in a 
competent rock such as limestone, a significant portion of the total applied 
stress is carried by the pore fluid, and the peak effective stress is only 20% of 
the peak total applied stress. 

In "conventional" soil mechanics, water and the grain solids are often 
assumed to be incompressible. These assumptions have significant imflica- 
tions with regard to the response of materials during undrained loading. 
Under undrained or zero volume change boundary conditions, the undrained 
strength at failure and the undrained effective stress path are unique for a 
given material with prescribed initial conditions (Lambe and Whitman 1969). 
This means that the effective stress path is independent of the applied total 
stress path.  A path of zero volume change in an elastic-plastic material 
implies that the elastic and plastic volume strains are of equal magnitude and 
opposite sign. To demonstrate tha» a unique effective stress path is developed, 
an undrained triaxial compression (TXC) tesi, i.e., constant radial stress 
durinc shear, and an undrained constant mean normal stress (CP) test, i.e., 
constant mean normal stress during shear, were numerically simulated. The 
following conditions existed prior to the undrained loading in both simula- 
tions: (1) the compressibilities of the water and the grain solids were zero; 
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Figure 6.10. Total and effective stress paths from TXC and CP tests 

(2) the nominal effective confining stress in the specimens was 200 MPa, 
which was generated by a drained hydrostatic loading; and (3) the initial pore 
fluid pressure was zero. The stresses during the shear loading were applied 
incrementally until the calculation would not converge under a convergence 
tolerance of 0.5 percent. The calculated total and effective stress paths for the 
TXC test (solid line) and the CP test (dashed line) are presented in Figure 
6.10. The calculated effective stress paths from the TXC and CP tests are 
identical. 

Additional undrained calculations were performed to prove that the un- 
drained effective stress paths are not unique when the water and grain solids 
are compressible. Three undrained TXC tests with the following initial condi- 
tions were simulated: the nominal effective confining stress was 200 MPa and 
the applied back pressures (initial pore fluid pressures) were 0, 100, and 
300 MPa. The calculated effective stress paths are presented in Figure 6.11. 
These calculations indicate that as the applied back pressure increased from 0 
to 300 MPa, the corresponding effective stress paths moved to lower values of 
effective mean normal stress. This response can be explained with the follow- 
ing logic. As the water becomes suffer with increasing levels of back pres- 
sure, equal strain increments within the specimen generate larger increments 
of pore fluid pressure. Thus, the effective stress paths move to the left in 
Figure 6.11. 

The previous sections show that the FE code can accurately simulate both 
drained and undrained responses of Salem limestone under ideal laboratory 
test boundary condition. In the following sections, non-ideal boundary 
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Figure 6.11. Effective stress paths from tests with different back pressures 
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conditions that actually exist in the laboratory tests will be simulated. 

Test Specimen Simulations 
•     i 

FEgrid 

Cylindrical test specimens were simulated with the axisymmetric FE grid 
depicted in Figure 6.12.   A quarter grid, consisting of 144 elements and 483 
nodes, was used in the simulation due to the symmetric nature of the problem. 
The specimen end caps were included in the simulation to investigate the 
effects of end cap restraint upon both the stress and strain conditions within 
the test specimen.  A worst case situation was simulated, i.e., one in which no 
sliding was permitted between the specimen and the steel end caps. 

The simulated specimen is 11.43 cm (4.5 in.) in length with a diameter of 
5.04 cm (2 in.). The permeability of the limestone was 1.03 x 10"9 m2, which 
is a value that insures a uniform pore pressure field throughout the mesh 
during both the drained and undrained simulations. 

Simulation of drained triaxial compression teat 

A drained triaxial compression test at a confining stress of 200 MPa was 
simulated in the following manner.  First, equal increments of vertical and 
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Figure 6.12.  Finite element grid for specimen simulation 

radial normal stresses were applied to the boundaries of the grid until the 
stresses equaled 200 MPa. Second, increments of vertical stress were applied 
until the total vertical stress reached 550 MPa. Finally, increments of vertical 
stress were removed until a hydrostatic state of total stress was obtained. 

The output from this calculation is plotted in the form of contour plots of 
several stress or strain parameters, i.e., V^D« pl**tic volume strain, axial 
strain and radial strain (Figures 6.13 and 6.14). The contour plots present the 
state of stress or strain in the specimen at the time of peak total vertical stress 
(Note: the end cap is not included in these contour plots). With the exception 
of the upper 15 to 20 

Table 6.1. 
Laboratory Calculated Strata and Strain Values 

percent of the speci- 
men, i.e.. near the 
interface of the 
specimen and end cap, 
the state of stress 
within the specimen is 
relatively uniform 
(Figure 6 13)   This is 
also true of the plastic 
volume strains within the specimen (Figure 6.13). However, both the axial 
and radial strains (Figure 6.14) exhibit significant gradients throughout the 
specimen. The smallest axial strains (0.03 m/m) are at the top of the 
specimen; the largest (0.20 m/m) develop at the center of the specimen. The 

Anal Swam 15.8% 

Radial Swam 6.2% 

Principal Street Difference 310 MPa 

VJ?o 179Mf»a 
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radial strains vary from approximately zero at the specimen-end cap interface 
to as much as -0.065 m/m at the center of the specimen. 

Table 6.1 contains values of stress and strain that would be calculated from 
laboratory measured load and deformation measurements. Stresses, e.g., 
principal stress difference, were corrected for the changing cross-sectional 
area of the test specimen. The stress values underestimate the strength of the 
test specimen by approximately 5 percent, 179 MPa (from above table) versus 
190 MPa (average stress throughout specimen). The axial strain of 
15.8 percent represents only a small portion of the calculated axial strain 
within the test specimen, while the radial strain of -6.2 percent is 
representative of the radial strains in the central portion of the test specimen. 

This calculation implies that the state of stress within the test specimen is 
not significantly effected by end cap restraints. Uniform stresses occur 
throughout major portions of the specimen. In contrast, large axial and radial 
strain gradients were developed in the test specimen. This implies that some 
type of end-cap lubrication should be used if uniform states of strain are 
desired. 

«D 

Simulation of consolidated undrained triaxial compression test 

A consolidated undrained triaxial compression test at a confining stress of 
200 MPa was simulated with the FE code JAM. To begin the calculation, 
equal increments of vertical and radial normal stresses were applied to the 
boundaries of the grid until a hydrostatic stress of 200 MPa was achieved. 
During this hydrostatic loading, pore fluid was allowed to drain from the 
specimen. The boundary conditions were then changed so that no pore fluid 
could drain from the specimen. Finally, increments of vertical stress were 
applied until the solution would not converge, which implied that the specimen 
had failed.  Failure occurred at a total axial strain of approximately 
4.7 percent.  A uniform pore fluid pressure existed throughout the specimen. 

The output from this calculation is plotted in the form of contour plots of 
V)2D, volume strain, axial strain, and radial strain (Figures 6.15 and 6.16). 
The contour plots present the state of stress or strain in the specimen at the 
time of specimen failure (Note: The end cap is again not included in these 
contour plots). The     Table 6.2. 
sfi2Q contours (Figure Laboratory Calculated Stress and Strain Values 
6 15) illustrate that a    for Undrained TXC Test 
uniform state of stress 
exists within a majority 
of the test specimen; 
significant gradients 
only exist near the 
specimen-end cap inter- 
face.  The same is true 
of the volume strain 

|                Axial Strain 4-7%                       § 

1               Radial Strain 0 4%                      1 

1               Volume Strain 3.8%                      § 

1    Principal Stress DiHerence 216 MPa                  I 

1                       ' i 
L                      v J*0 124 MPa                  j 
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contours. The calculated volume strains indicate that the specimen was 
compacting. The calculated pore pressures confirm this observation, i.e., they 
increase continuously until spec  «en failure occurs.  Due to the small axial 
strain level at which specimen failure occurs, significant gradients of axial and 
radial strain were not developed in the test specimen (Figure 6.16). Axial 
strains vary from 0.02 m/m at the top of the specimen to less than 0.0SS m/m 
in the center of the specimen. Radial strains range from approximately zero 
at the specimen-end cap interface to -0.004 m/m at the center of the specimen. 

Table 6.2 contains values of stress and strain that would be calculated from 
laboratory measured load and deformation measurements.  As in the drained 
simulation, stresses were corrected for the changing cross-sectional area of the 
test specimen. The laboratory calculated stress values correspond with the 
values from the test specimen simulation, i.e., 124 MPa (from above table) 
versus 123 MPa (average stress throughout specimen). The laboratory calcu- 
lated volume strain of 3.8 percent underestimates the simulated volume strains 
that vary between 4 and 4.4 percent throughout most of the test specimen. 
The axial strain of 4.7 percent agrees with the calculated axial strain 
throughout a major portion of the test specimen. The radial strain of -0.4% is 
representative of the simulated radial strains in the central portion of the test 
specimen. 

This calculation demonstrates that significant stress and strain gradients are 
not developed in the limestone when the specimen fails at small axial strains, 
despite the introduction of end cap restraint. In addition, die stresses and 
strains calculated from laboratory measurements correlate well with the actual 
stress and strain states within the test specimen. 

Summary 

Numerical simulations of limestone behavior under drained and undrained 
boundary conditions were presented in this chapter. The ability of the 
14-parameter cap model to simulate the drained behavior of the limestone was 
demonstrated by comparing calculated responses of hydrostatic, uniaxial 
strain, and triaxial compression loadings with measured or recommended 
limestone responses. The ability of the FE code to calculate the undrained 
behavior of the limestone was demonstrated by comparing calculated respon- 
ses of uniaxial strain loadings with recommended limestone responses. 
Finally, both drained and undrained TXC test simulations were documented 
which demonstrate the utility of the FE code in analyzing laboratory test 
specimen conditions. 
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7    Summary 

This report documents the features and algorithms implemented into the FE 
code JAM. The FE code JAM is a numerical tool with the capability to: 

• calculate strains, total and effective stresses, and pore fluid pressures 
for fully- and partially-saturated porous media, 

• calculate the time dependent flow of pore fluids in porous media, 

• model nonlinear irreversible stress-strain behavior, including coupled 
shear-induced volume change, and 

• simulate the effect of nonlinear pore fluid compressibility and the 
contribution of the compressibility of the grain solids for stresses up to 
several hundred megapascals. 

bi this report, the FE model implemented into JAM was described, and 
equations were developed for the residual forces. The features of the cap 
model and the relevant equations were documented, and the steps required to 
implement the cap model into the FE code were summarized. Other consti- 
tutive models available in the code were also reviewed. 

The equations of state for air, water, and the grain solids were documented, 
and the equations for the compressibility of an air-water mixture were devel- 
oped. Several documented verification probten» demonstrated that die pro- 
gram works correctly. These problems included one- and two-dimensional 
consolidation problems, Cryer's problem of a consolidating sphere of soil, and 
a thick-walled cylinder problem. 

Numerical simulations of limestone behavior under drained and undrained 
boundary conditions were presented. A 14-parameter cap model modelled the 
skeletal properties of the limestone  Single element calculations demonstrated 
the ability of die FE code to simulate bom die drained and undrained re- 
sponses of the limestone under several different load and unload boundary 
conditions. The utility of the FE code was demonstrated by the simulation of 
drained and undrained triaxial compression tests, and the influence end cap 
restraint had on die stress and strain states in the test specimen. 
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